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Ergodic theory

A discrete dynamical system consists of a structure, X, and a map
T from X to X:

e Think of the underlying set of X’ as the set of states of a
system.

o If x is a state, Tx gives the state after one unit of time.

In ergodic theory, X is assumed to be a finite measure space
(X,B, 1), and T is assumed to be a measure-preserving
transformation, i.e. (T 1A) = u(A) for every A € B.

Call (X, B, u, T) a measure-preserving system.



The metamathematics of ergodic theory

Ergodic theory emerged from seventeenth century dynamics and
nineteenth century statistical mechanics.

Since Poincaré, the emphasis has been on characterizing structural
properties of dynamical systems, especially with respect to long
term behavior (stability, recurrence).

Today, the field uses structural, infinitary, and nonconstructive
methods that are characteristic of modern mathematics.

These are often at odds with computational concerns.



The metamathematics of ergodic theory

Central questions:
e To what extent can the methods and objects of ergodic theory
be given a direct computational interpretation?

e How can we locate the “constructive content” of the
nonconstructive methods?

e Can we extract additional qualitative and quantitative
information from nonconstructive proofs?

| will focus on two case studies:
e the von Neumann and Birkhoff ergodic theorems

o the Furstenberg-Zimmer structure theorem, and Furstenberg’s
ergodic-theoretic proof of Szemerédi's theorem



The ergodic theorems

Consider the orbit x, Tx, T%x, ..., and let f : X — R be some
measurement. Consider the averages

%(f(x) AT 4+ F(T7 1)),

For each n > 1, define A,f to be the function %ZKH foTl

Theorem (Birkhoff). For every f in [1(X), (A,f) converges
pointwise almost everywhere, and in the L1 norm.

A space is ergodic if for every A, T~1(A) = A implies u(A) = 0 or
n(A) = 1.

If X is ergodic, then (A,f) converges to the constant function
[fdu.



The ergodic theorems

Recall that L?(X) is the Hilbert space of square-integrable
functions on X modulo a.e. equivalence, with inner product

(f.e)= [ fe dn

Theorem (von Neumann). For every f in L2(X), (A,f)
converges in the L2 norm.

A measure-preserving transformation T gives rise to an isometry T
on L2(X),
Tf=foT.

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T on a Hilbert space
(i.e. satisfying | Tf|| < ||f]| for every f in H.)



Bounding the rate of convergence

Can we compute a bound on the rate of convergence of (A,f)
from the inital data (T and f)?

In other words: can we compute a function r : Q — N such that
for every rational € > 0,

[Amf = Ao fll <e
whenever m > r(e)?

Krengel (et al.): convergence can be arbitrarily slow. But
computability is a different question.

Note that the question depends on suitable notions of
computability in analysis.



Observations

If (an)nen is a sequence of reals that decreases to 0, no matter
how slowly, one can compute a bound on the rate of convergence
from (ap).

But there are bounded, computable, decreasing sequences (by,) of
rationals that do not have a computable limit.

There are also computable sequences (c,,) of rationals that
converge to 0, with no computable bound on the rate of
convergence.

Conclusion: at issue is not the rate of convergence, but its
predictability.



A negative result

Theorem (A-Simic). There are a computable measure-preserving
transformation of [0, 1] under Lebesgue measure and a computable
characteristic function f = x4, such that if f* = lim, A,f, then
||f*]]2 is not a computable real number.

In particular, f* is not a computable element of L2(X), and there
is no computable bound on the rate of convergence of (A,f) in

either the L2 or L1 norm.

V'yugin (1998) gave a similar noncomputability result.



A positive result

Theorem (A-Gerhardy-Towsner). Let T be a nonexpansive
operator on a separable Hilbert space and let f be an element of
that space. Let f* =lim, A,f. Then *, and a bound on the rate
of convergence of (A,f) in the Hilbert space norm, can be
computed from f, T, and ||f*].

In particular, if T arises from an ergodic transformation T, then f*
is computable from T and f.



A constructive mean ergodic theorem

It turns out that we can say more, even in situations where there is
no computable bound on the rate of convergence.

The assertion that the sequence (A,f) converges can be
represented as follows:

Ve >03nVm > n (||Amf — Anf|| < e).

This is classically equivalent to the assertion that for any function
K

Ve > 03nVm e [n, K(n)] (||Amf — Anf]| < ).



A constructive mean ergodic theorem

Theorem (A-G-T). Let T be any nonexpansive operator on a
Hilbert space, let f be any element of that space, and let € > 0,
and let K be any function. Then there is an n > 1 such that for
every min [n, K(n)], ||Amf — Anf]| < .

In fact, we provide a bound on n expressed solely in terms of K
and p = ||f||/e. Notably, the bound is independent of X and T.

As special cases, we have the following:
o If K = nO(l)’ then n(f,g) _ 220(p2 Ioglogp).
o If K =290, then n(f,e) = 2z
e If K= 0(n) and T is an isometry, then n(f,e) = 20(°*logr),



A constructive pointwise ergodic theorem

The following is classically equivalent to the pointwise ergodic
theorem:

Theorem (A-G-T). For every f in L?(X), A1 >0, A2 >0, and K
there is an n > 1 satisfying

w({x ] max |Asf(x) — Anf(x)| > A1}) < Ao

n<m<K(n)

We provide explicit bounds on n in terms of f, A\;, A2, and K.

Bishop's upcrossing inequalities provides another constructive
interpretation of the pointwise ergodic theorem.



Proof mining

Our constructive proof was obtained using “proof mining”
methods, developed chiefly by Ulrich Kohlenbach and his students.

Terence Tao has used similar ideas to obtain constructive /
quantitative versions of nonconstructive statements. He referred to
such phenomena as “metastability.”

Such ideas played a role in his “Norm convergence of multiple
ergodic averages for commuting transformations,” and in his work
with Ben Green on arithmetic progressions in the primes.

Our proofs are a form of “energy incrementation” argument. The
relationships between the infinitary and quantitative methods
needs to be better understood.



Ergodic Ramsey theory

Let us consider an applications of ergodic theory to combinatorics.

Theorem (van der Waerden). If one colors the natural numbers
with finitely many colors, then there are arbitrarily long
monochromatic arithmetic progressions.

The theorem has a finitary () statement:

Theorem. For every k and r there is an n large enough such that
if one colors elements of the set {1,...,n} with r colors, there is a
monochromatic arithmetic progression of length k.

van der Waerden proved this in 1927. Furstenberg and Weiss
presented an elegant proof using topological dynamics in 1978.



Szemerédi's theorem

Szemerédi's theorem is a “density” version of van der Waerden's
theorem.

Szemerédi’s Theorem. Every set S of natural numbers with
positive upper Banach density has arbitrarily long arithmetic
progressions.

Equivalently:
Theorem. For every k and § > 0, there is an n large enough, such

that if S is any subset of {1,...,n} with density at least J, then S
has an arithmetic progression of length k.



History

1936: Conjectured by Erdés and Turdn
1952: Roth proved it for k = 3.
1969: Szemerédi proved it for k = 4.

1974: Szemerédi proved the full theorem.
1977: Furstenberg

e gave an equivalent ergodic-theoretic statement,

e provided a structural analysis of ergodic measure-preserving

systems, and

e used the latter to give a proof.
1979: Furstenberg and Katznelson used the structure theorem
to give a streamlined proof of an even stronger result.
2001: Gowers gave a new proof of Szemerédi's theorem, with
elementary bounds.
2004: Tao and Green used quantitative ergodic-theoretic
methods to prove that there are arbitrarily long arithmetic
progressions in the primes.



Logical analysis

The fact that powerful infinitary methods can yield explicit
combinatorial results deserves logical analysis.

Recall the central questions:
e To what extent can the methods and objects of ergodic theory
be given a direct computational interpretation?

e How can we locate the “constructive content” of the
nonconstructive methods?

e Can we extract additional qualitative and quantitative
information from nonconstructive proofs?



Furstenberg correspondence

Suppose there were a sequence of subsets S, of {0,...,m— 1} of
density § > 0, with no arithmetic progression of length k.

Consider the spaces X, = {0,...,2m — 1} with uniform
distribution and shift map Tx = x + 1 mod2m. Then for every m
and n < m,

SN TSN T727S,n...nT kg — g
A compactness argument yields a space (X, B, 1) and set S that
gives a counterexample to the following:

Theorem. For any measure-preserving system (X, B, i, T), any
set S of positive measure, and any k, there is an n such that

wW(SNT"sNT2"sn..nT-k"ngy > 0,

In fact, this theorem is equivalent to Szemerédi's theorem.



The Furstenberg-Katznelson-Ornstein proof

Most presentations of Furstenberg's proof use the
Furstenberg-Zimmer structure theorem.

This shows that every measure preserving system has a factor, V,
such that
e ) is obtained by a transfinite sequence of compact extensions,
starting with the trivial factor.

o X is weak mixing relative to Y.

Foreman and Beleznay have shown that, for separable systems, the
construction of ) can extend arbitrarily far into the countable
ordinals.

Towsner and | have shown that a weaker form of the second is
sufficient for the FKO proof, and this happens before level w*” of
the hierarchy.



The Furstenberg-Katznelson-Ornstein proof

Say a set A is UMR if for every k, pi(A) > 0 implies

1
liminf = " u(AN T "ANT2"An...n T-*=1m) >0,
e i<n

Say a factor is UMR if every element is UMR.

This is a strengthening of the desired conclusion for S.

The property of being UMR:
e holds the trivial factor;
e is maintained under compact extensions;
e is maintained under limits; and

e is maintained under weak mixing extensions.



Furstenberg's original proof

Say that a factor ) is k-characteristic if the following holds:

k
ST LTI )

i<n =1 i<n =1

=0.
L2(x)

lim
n—oo

This means that the projections of the f;'s on ) are enough to
determine the limiting behavior of the first average.

A factor ) is UMR if the following holds: for any nonnegative g in
L°°(X) and any t, if [ g du > 0 then

liminf = Z/HT” (g|Y)du>D0.
e i<u I<t

This means that elements of ) satisfy the conclusion of
Szemerédi's theorem.



Furstenberg's original proof

Define a sequence of factors ) as follows:
e ) consists of the T-invariant functions.

e For each k, Y11 = Z(Yk), the maximal compact extension
of yk.

Each of these can be proved by induction on k:
e YV is (k + 1)-characteristic.
o Vi is UMR.

These yield the conclusion of Szemerédi's theorem for progressions
of length k + 2.



Towards a quantitative version
The statement that ) is k-characteristic is equivalent to the
following:

Vf,..., fx,e >0, I\/IEIanE[n M(n )]

)| ECRED SN | R UIE

/<nl 1 i<n =1

<e.
L2(x)

The statement that ) is UMR is equivalent to the following:

Vg >0,t,V 35 > 0,u Vv € [u, V(I,u)]

> [T e 1Y) du >

i<v I<t



Towards a quantitative version

A first attempt would be to try to prove, by induction on k, a
quantitative version of the statement that for every k > 1, there is
an invariant factor ) such that

e Y is k-characteristic, and
e Vis UMR.

The problem is that the relevant )'s are far from computable.



Towards a quantitative version

An alternative approach: fix k, and a set A with wu(A) > 0. Prove
by induction on k, from k down to 1, a quantitative version of the
statement that for every invariant factor ), if

e )V is k-characteristic, and
e Vis UMR,

then the conclusion holds for A and k.
When k is k, the proof of the original statement is easy.

On the other hand, when k = 1, the quantitative MET makes it
possible to satisfy the antedecent, and so the conclusion follows.



Towards a quantitative version

In symbols: for every k from k down to 1, and any invariant ), if

Vf,..., fx,e >0, MﬂanE[n M(n )]
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and

Vg >0,t,V 36 >0,uVv € [u, V(4,u)]

> [T e 1Y) du >

i<v I<t

then the conclusion holds.



Towards a quantitative version

In fact, one only has to show how the conclusion can be obtained
from witnessing functions for n, §, and u, which in a sense
determine how well )V is “locally k-characteristic” and “locally
UMR."

It is possible that there is a bound on the conclusion that doesn't
depend on Y.

If not, one would hope to isolate the quantitative features of )/ on
which the result depends.



Tao's quantitative version

Recall that the measure space coming out of the Furstenberg
construction can be viewed as a “limit” of finite spaces. Tao's
quantitative proof simply uses a sufficiently large finite space.

One difficulty: constructions in the limit do not correspond to
constructions in the finite spaces. For example, a factor in the limit
is not a limit of factors.

Tao considers complexity-bounded approximations to the “true”
ergodic-theoretic factors, for example, finite factors where the
number of atoms is bounded independent of n.

It would be helpful to have a cleaner connection to the infinitary
argument.



Conclusions

Goals:

o A better understanding of the relationship between the
infinitary (“soft”) and finitary, quantitative (“hard”) methods.

o Infinitary methods that are better suited to finitary problems.

¢ Additional information from proofs using the infinitary
methods.

e An understanding as to how and where logical strength can be
avoided, and where it is necessary.

There is a lot to do:

e Dynamical systems represents represent an uneasy tension
between structural and computational concerns.

e Applications to combinatorics, in particular, require both
structural ideas and quantitative information.



Some references

Associated papers and talks can be found on my web page:

¢ “Fundamental notions of analysis in subsystems of
second-order arithmetic” (with Ksenija Simic)

e “Local stability of ergodic averages” (with Philipp Gerhardy
and Henry Towsner)

¢ “Functional interpretation and inductive definitions” (with
Henry Towsner)

e "“The metamathematics of ergodic theory”

e “Metastability in the Furstenberg-Zimmer tower” (with Henry
Towsner)



