Numerical Computations in Smooth Ergodic Theory

Oscar Bandtlow

School of Mathematical Sciences, QMUL

30 October 2009

Oscar Bandtlow (Maths QMUL)

Computations in Ergodic Theory

Oscar Bandtlow (Maths QMUL)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Ingredients

- set X (interval, manifold, etc)
- map $T: X \rightarrow X$ (continuous, smooth, etc)

3. 3

Ingredients

- set X (interval, manifold, etc)
- map $T: X \to X$ (continuous, smooth, etc)

Dynamical system

- iterates $\{T^n\}$ of map T
- models temporal process in time n

3

A D A D A D A

Ingredients

- set X (interval, manifold, etc)
- map $T: X \to X$ (continuous, smooth, etc)

Dynamical system

- iterates $\{T^n\}$ of map T
- models temporal process in time n

Observation

- temporal behaviour of system $\{T^n\}$ can be very complicated
- trajectories $\{T^n x\}$ might exhibit unpredictable, irregular behaviour

イロト 不得 トイヨト イヨト 二日

Example: doubling map

Oscar Bandtlow (Maths QMUL)

H b

< //2 → < 三

э

Example: doubling map...

Typical trajectory: 250 iterates of the point $1/\sqrt{2}$

Example: doubling map...

Sensitive dependence on initial conditions

Coping with chaos

Idea

Adopt probabilistic description

- assume: \exists probability measure m on X
- for $A \subset X$ measurable consider

$$\operatorname{Prob}\{T^n x \in A\} = \operatorname{Prob}\{x \in T^{-n}A\} = m(T^{-n}A)$$

 more generally: consider stochastic process {f ∘ Tⁿ} for given observable f : X → ℝ

Example: doubling map again

• notice that Lebesgue measure m on [0, 1] is invariant under T, i.e.

$$m(T^{-1}A) = m(A) \quad \forall A \text{ measurable}$$

thus:

$$\operatorname{Prob} \left\{ T^n x \in A \right\} = \operatorname{Prob} \left\{ x \in T^{-n} A \right\} = m(T^{-n} A) = m(A)$$

Another example

notice that Lebesgue measure *m* on [0, 1] is <u>not</u> invariant under *T*thus:

$$\operatorname{Prob} \left\{ T^n x \in A \right\} = \operatorname{Prob} \left\{ x \in T^{-n} A \right\} = m(T^{-n} A) = ???$$

Smooth ergodic theory

Given chaotic map T : X → X is there an *invariant measure*?
 I.e. a measure μ such that

$$\mu(T^{-1}A) = \mu(A) \quad (\forall A \subset X \text{ measurable})$$

If yes, is the measure µ well-behaved?
I.e. absolutely continuous w.r.t m, i.e. of the form

$$\mu(A) = \int_A \varrho \, dm$$

for some *m*-integrable function $\varrho: X \to \mathbb{R}$.

• Is $T: (X, \mu) \rightarrow (X, \mu)$ ergodic? Mixing?

Basic tool: transfer operators

Oscar Bandtlow (Maths QMUL)

∃ → 10 / 15 30 October 2009

3

< (T) > <

Basic tool: transfer operators

Fact

With every smooth chaotic map T it is possible to associate a linear operator \mathcal{L} , known as *transfer operator*.

Basic tool: transfer operators

Fact

With every smooth chaotic map T it is possible to associate a linear operator \mathcal{L} , known as *transfer operator*.

Properties

- *L* is continuous linear operator on some infinite dimensional vector space (typically a functional Banach sapce)
- \mathcal{L} is adjoint of Koopman operator $Ug = g \circ T$

$$\int_X \mathcal{L}f \cdot g \, dm = \int_X f \cdot Ug \, dm$$

 \bullet spectral properties of ${\cal L}$ yield insight into ergodic properties of ${\cal T}$

< 回 ト < 三 ト < 三 ト

Further properties of ${\cal L}$

• fixed point yields density of invariant measure: if $\mathcal{L}\rho = \rho, \ \rho \ge 0$, then

$$\mu(A) := \int_A \varrho \, dm$$

is invariant measure for T

3. 3

A 🖓 h

Further properties of ${\cal L}$

• fixed point yields density of invariant measure: if $\mathcal{L}\rho = \rho$, $\rho > 0$, then

$$\mu(A) := \int_A \varrho \, dm$$

is invariant measure for T

 when restricted to suitable subspaces B of L¹(X, m), transfer operator L has 'spectral gap', i.e. spectrum is

Further properties of ${\mathcal L}$

• fixed point yields density of invariant measure: if $\mathcal{L}\rho = \rho$, $\rho > 0$, then

$$\mu(A) := \int_A \varrho \, dm$$

is invariant measure for T

 when restricted to suitable subspaces B of L¹(X, m), transfer operator L has 'spectral gap', i.e. spectrum is

• spectral gap yields rate of decay of correlations:

$$\int_X f \cdot g \circ T^n \, d\mu \sim |\lambda_2|^n$$
 as $n o \infty$

where λ_2 is second largest eigenvalue of ${\cal L}$

Oscar Bandtlow (Maths QMUL)

Computations in Ergodic Theory

30 October 2009 12 / 15

3

< 17 ▶

Idea

Use approximation scheme $\{P_n\}$ for $\mathcal{L}: B \to B$

 $P_n: B \to B$ projection

 $\operatorname{rank} P_n = n$ $P_n f \to f \quad (\forall f \in B)$

- 4 同 6 4 日 6 4 日 6

Idea

Use approximation scheme $\{P_n\}$ for $\mathcal{L}: B \to B$

 $P_n: B \to B$ projection

 $\operatorname{rank} P_n = n$ $P_n f \to f \quad (\forall f \in B)$

Hope

spectral data of $P_n \mathcal{L} P_n \rightarrow$ spectral data of \mathcal{L}

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Oscar Bandtlow (Maths QMUL)

Idea

Use approximation scheme $\{P_n\}$ for $\mathcal{L}: B \to B$

 $P_n: B \to B$ projection

 $\operatorname{rank} P_n = n$ $P_n f \to f \quad (\forall f \in B)$

Hope

spectral data of
$$P_n \mathcal{L} P_n \rightarrow$$
 spectral data of \mathcal{L}

Warning

 \exists bounded operators *L*, approximation schemes $\{P_n\}$ such that

$$\sigma(L) =$$
unit disk, but $\sigma(P_n \mathcal{L} P_n) = \{0\}$

$$\sigma(\mathcal{L})=\left\{0,1
ight\}, ext{ but } \sigma(\mathcal{P}_n\mathcal{L}\mathcal{P}_n)=\left\{0,rac{1}{2},1
ight\}$$

Oscar Bandtlow (Maths QMUL)

Example: C^{ω} map

Oscar Bandtlow (Maths QMUL)

Computations in Ergodic Theory

30 October 2009 13 / 15

Oscar Bandtlow (Maths QMUL)

Computations in Ergodic Theory

Oscar Bandtlow (Maths QMUL)

Computations in Ergodic Theory

30 October 2009 15 / 15

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem (Newburgh 1951)

Let $L, L_n : B \to B$ be bounded and let $L_n \to L$ in operator norm. If $\sigma(L)$ is totally disconnected, then

$$\sigma(L_n) \to \sigma(L)$$

in the Hausdorff metric.

/₽ ▶ ∢ ∋ ▶

Theorem (Newburgh 1951)

Let $L, L_n : B \to B$ be bounded and let $L_n \to L$ in operator norm. If $\sigma(L)$ is totally disconnected, then

$$\sigma(L_n) \to \sigma(L)$$

in the Hausdorff metric.

Corollary

If L is compact and $\{P_n\}$ is an approximation scheme, then

$$\sigma(P_n L P_n) \to \sigma(L)$$

in the Hausdorff metric.

くほと くほと くほと

Theorem (Newburgh 1951)

Let $L, L_n : B \to B$ be bounded and let $L_n \to L$ in operator norm. If $\sigma(L)$ is totally disconnected, then

$$\sigma(L_n) \to \sigma(L)$$

in the Hausdorff metric.

Corollary

If L is compact and $\{P_n\}$ is an approximation scheme, then

$$\sigma(P_n L P_n) \to \sigma(L)$$

in the Hausdorff metric.

Question

Is it possible to say something about the speed of convergence?

Oscar Bandtlow (Maths QMUL)

Computations in Ergodic Theory