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• ergodic theorems I ↔ normality

• ergodic theorems II ↔ equidistribution

• recurrence ↔ Szemerédi

• mixing ↔ unit theorems

• rigidity ↔ Littlewood

• growth problems ↔ Lehmer, Mersenne,...

• UBC ↔ ?



Setting:

Ergodic theory studies measurable maps T : X → X preserving a probability mea-
sure; write (and fix) (X,A, µ, T ).

Often X or T has additional structure (homogeneous space, compact group, metric
space, Cantor set, continuous map, group rotation,...) and there are distinguished
measures (uniquely invariant, maximizing, algebraic, absolutely continuous,...).



ergodic theorems I ↔ normality:

Theorem 1 (Birkhoff 1931): Assume that T is ergodic (has no non-trivial mea-
surable invariant sets). Then, given any representative f of an element of L1

µ, there
is a null set N(f) for which

1

N

N−1∑
n=1

f(T nx) −→
∫

f dµ

for all x /∈ N(f).

Theorem 2 (Borel 1909): Lebesgue almost-every x ∈ [0,1] is normal (blocks of
j digits appear with frequency b−j) for every base b ≥ 2.

Th.1 ⇒ Th.2 via the fact that x 7→ bx (mod 1) preserves Lebesgue measure and is
ergodic.

• The last statement might be attributed to van Vleck (1908).

• Borel’s 1909 paper is “characterized by convenient neglect of error terms in asymptotics,
incorrect reasoning, and correct results” (Doob)



ergodic theorems II ↔ equidistribution:

Theorem 3 (Weyl 1910/Bohl 1909/Sierpiński 1910): Every orbit under the
map x 7→ x + t (mod 1) on [0,1) is equidistributed (asymptotic proportion of time
in (a, b) equal to b− a) if t /∈ Q.

Theorem 4 (Weyl 1916): If p is a polynomial with at least one irrational coeffi-
cient, then {p(n) | n ∈ N} is equidistributed modulo 1.

Theorem 5 (old; in Oxtoby 1952): If T is continuous, X a compact metric
space, then T has only one invariant Borel probability measure if and only if

1

N

N−1∑
n=1

f(T nx) → C(f)

for any f ∈ C(X) and every x ∈ X.

Th.5 ⇒ Th.3 as it is easy to check that Lebesgue measure is uniquely invariant.
Th.4 looks more subtle, but turns out to be a consequence of the same phenomena.



Theorem 6 (Furstenberg 1961): If T : X → X is uniquely ergodic and c : X → G
is continuous (G a compact group), then for the skew-product map

(x, g) 7→ (Tx, c(x)g),

ergodicity implies unique ergodicity.

Th.6 ⇒ Th.4 by expressing 4 as one factor in a uniquely ergodic map on a high-
dimensional torus.

• Th. 6 is a consequence of making the right definition of “generic point”: x ∈ X is generic for
T and µ if the orbit of x is equidistributed with respect to µ. Lemma: for a continuous map
T on a compact metric space, µ-a.e. point is generic for T and µ.



recurrence ↔ Szemerédi:

Theorem 7 (Szemerédi 1975): A subset S of N with positive upper Banach
density,

lim sup
N−M→∞

|S ∩ [M, N ]|
N −M

> 0,

contains arithmetic progressions of arbitrary finite length.

Theorem 8 (Furstenberg 1977): If µ(A) > 0 then for any k ≥ 1 there is some n
for which

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0.

Th.8 ⇔ Th.7, giving a new proof and starting a new field. The connection between
them is easy, but both proofs lie quite deep.

• Th. 8 has no hypotheses beyond the setting.

• Effective versions exist, due to Gowers, Tao, and others.

• Th. 8 involves an approach to decomposing measure-preserving maps, and a correspondence
principle to translate between ergodic theory and infinite combinatorics.



mixing ↔ unit theorems:

Theorem 9 (Schlickewei 1990/van der Poorten & Schlickewei 1991): Let
K be a field of characteristic zero, G ⊂ K \ {0} a finitely-generated multiplicative
subgroup, and a1, . . . , an ∈ K \ {0}. Then

a1x1 + · · ·+ anxn = 1

has only finitely many solutions (x1, . . . , xn) ∈ Gn for which no proper subsum van-
ishes.

Theorem 10 (Schmidt & Ward 1993): Mixing implies mixing of all orders for
Zd-actions by automorphisms of compact connected abelian groups.

Th.9 ⇔ Th.10 via Fourier analysis; the connection is easy. Th. 9 is a deep result,
and Th. 10 has no other proof.

• Th. 9 has quantitative versions but not effective ones (that is, there are bounds on the number
of solutions in terms of K, n, and rank(G) but no bounds on the height of solutions.

• Th. 10 should have various strengthenings in terms of rate of mixing, directional uniformity
etc.



• There is an analogous correspondence between mixing on disconnected groups and unit theo-
rems in positive characteristic, due to Masser (2004) but it is different: in particular Th. 10
is false on disconnected groups.



rigidity ↔ Littlewood:

Let 〈t〉 denote the distance from t ∈ R to the nearest integer.

Conjecture 11 (Littlewood 1930s): lim infn→∞ n〈nx〉〈ny〉 = 0 for every x, y ∈ R.

The continued fraction expansion of x or y shows this is no more than 1
2
; the point is whether one

can do a little better for two different numbers simultaneously.

Conjecture 12 (Margulis, special case): Let A be the group of positive diagonal
matrices in SLk(R), k ≥ 3, acting on the space SLk(R)/SLk(Z). If µ is an A-invariant
ergodic probability measure on this space, is there a closed connected group L > A
for which µ is the unique L-invariant measure on a single closed L-orbit (that is, is
µ automatically algebraic)?

Conj.12 ⇒ Conj.11, but more importantly a partial version of Conj. 12 gives a
partial Conj. 11.



Theorem 13 (Einsiedler–Katok–Lindenstrauss 2006): Conjecture 12 holds un-
der the additional hypothesis that µ gives positive entropy to some one-parameter
subgroup of A. Hence, the set of counterexamples to Conjecture 11 lies inside a
countable union of sets of box dimension zero.

This is an instance of “abelian” measure rigidity, in contrast to the rigidity associated to Raghu-

nathan’s conjecture, in which individual elements of the action exhibit rigidity.



growth problems ↔ Lehmer, Mersenne,...:

Theorem 14: The set of topological entropies of group automorphisms is the
closure of {m(f) | f ∈ Z[x]}, where m(f) =

∫ 1
0 log |f(e2πis)|ds and m(0) := ∞.

Conjecture 15 (Lehmer 1933): inf{m(f) | f ∈ Z[x], m(f) > 0} > 0.

If Lehmer’s conjecture is false, then the set of entropies is [0,∞]; if it is true, then
the set of entropies is countable.

• Under a weak hypothesis (ergodic, or mixing, which in this setting really means not having a
periodic part) any compact group automorphism is measurably isomorphic to an iid process.
Thus we do not know if all iid processes have models as group automorphisms.

• Lehmer’s problem has been solved for “non-reciprocal” polynomials and for bounded degree,
but remains open.



(Nonsensical) Question: what are the dynamical properties of a “typical” compact
group automorphism?

Sample subquestion: Choose a subset S of the primes by throwing a fair coin.
What is

lim sup
n→∞

1

n
log(2n − 1)

∏
p∈S

|2n − 1|p?

Easy arguments say this is > 1
2
log 2 (Ward 1998) – but it clearly should be log2

almost surely.



UBC:

Unlike the others, this is simply a conjecture that is simultaneously arithmetical and
dynamical.

Uniform Boundedness Conjecture (Morton–Silverman 1994): Given d ≥ 2,
N ≥ 1, D ≥ 1 there is a constant C(d, N, D) such that for any number field K with
[K : Q] ≤ D and any (finite) morphism φ : PN → PN of degree d defined over K, the
number of pre-periodic points of φ in PN(K) is bounded above by C(d, N, D).

• Northcott gives a non-uniform bound.

• Restricting to N = 1, D = 1 and degree 4 implies Mazur’s theorem (1978) uniformly bounding
the size of the torsion subgroup of the Q-points of elliptic curves defined over Q.

• For N = 1 and degree 4, it implies Merel’s theorem (1996) that the size of the torsion subgroup
of an elliptic curve over a number field is bounded in terms of the degree of number field only.

• Fakhruddin (2001) showed that UBC implies there is a constant C(N, D) so that if [K : Q] 6 D
and A is an abelian variety defined over K of dimension N , then |A(K)tors| 6 C(N, D).

• If UBC holds for Q, then it holds for number fields.
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