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Corrected version Nov.20: a confused slide on the functional

interpretation of weak compactness as well as a slide stating a bound

on Browder’s theorem have been deleted as the latter has been

superseded meanwhile: weak compactess can be bypassed resulting in

a primitive recursive bound.
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Logical analysis of proofs P (G. Kreisel > 1950)

Goal: Additional information on the conclusion C :

Quantitative information: effective bounds.

Qualitative information: new uniformity results (relevance

pointed out by T. Tao).

Logical methods: Proof Interpretations

interpret the formulas A in P : A 7→ AI ,

interpretation CI contains the additional information,

construct by recursion on P a new proof PI of CI .

Our approach is based on novel forms and extensions of:

K. Gödel’s functional interpretation!
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Gödel’s functional interpretation in five minutes

Gödel’s functional interpretation G :

A 7→ AG

such that

AG ≡ ∀x ∃y AG (x , y), where AG is quantifier-free,

For A ≡ ∀x∃y Aqf (x , y) one has AG ≡ A.

A ↔ AG by classical logic and quantifier-free choice in all types

QF-AC : ∀a∃b Fqf (a, b) → ∃B∀a Fqf (a,B(a)).

x , y are tuples of functionals of finite type over the base types of

the system at hand,
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AG ≡ ∀u∃x AG (u, x), BG ≡ ∀v∃y BG (v , y).

(G1) PG ≡ P ≡ PG for atomic P

(G2) (¬A)G ≡ ∀f ∃u ¬AG (u, f (u))

(G3) (A ∨ B)G ≡ ∀u, v∃x , y
(
AG (u, x) ∨ BG (v , y)

)
(G4) (∀z A)G ≡ ∀z , u∃x AG (z , u, x)

(G5) (A→B)G ≡ ∀f , v∃u, y
(
AG (u, f (u)) → BG (v , y)

)
(G6) (∃zA)G ≡ ∀U∃z , f AG (z ,U(z , f ), f (U(z , f )))

(G7) (A ∧ B)G ≡ ∀n, u, v∃x , y (n=0 → AG (u, x)) ∧ (n 6=0 → BG (v , y))

↔ ∀u, v∃x , y
(
AG (u, x) ∧ BG (v , y)

)
.
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G extracts from a given proof p

p ` ∀x ∃y Aqf (x , y)

explicit effective functionals t realizing AG , i.e.

∀x Aqf (x , t(x)).

Gödel, Kreisel, Spector, Parsons, Feferman, K., . . .: Numerous

optimal extraction theorems for systems from poly-time arithmetic up to

full analysis with dependent choice (Spector, based on bar recursion).

Monotone G (K. 1996) extracts Φ∗ such that

∃Y
(
Φ∗ & Y ∧ ∀x AG (x ,Y (x))

)
,

(& some suitable notion ‘bound’, see later).

(see also: bounded interpretation, Ferreira/Oliva 2005).
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Example: monotone convergence principle

Consider:

∀k ∈ IN∃n ∈ IN∀m ∈ IN (|rn − rn+m| < 2−k).

where (rn) is a nonincreasing sequence in [0, 1]

Problem: no computable rate of convergence (E. Specker 1949).

Functional interpretation changes things to the equivalent Herbrand

normal form (Tao: ‘metastability’)

∀k ∈ IN∀g ∈ ININ ∃n ∈ IN∀i , j ∈ [n, n + g(n)]
(
|ri − rj | < 2−k

)
.

Solvable: Let g̃(n) := n + g(n).

∃n ≤ max
i≤2k

{g̃ (i)(0)} ∀i , j ∈ [n, n + g(n)]
(
|ri − rj | < 2−k

)
.
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General logical metatheorems on the extractability of

uniform bounds in analysis

Concrete Polish (P) and compact (K) metric spaces are

represented via ININ and 2IN. Macros ‘∀x ∈ P, y ∈ K ’.

Many abstract types of metric structures can be added as

atoms: metric, hyperbolic, CAT(0), δ-hyperbolic, normed, uniformly

convex, Hilbert, ... spaces or IR-trees X : add new base type X , all

finite types over IN,X and a new constant dX representing d etc.

Crucial for uniformity of bounds: no separability assumptions!
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A formal system for analysis

Types: (i) IN,X are types, (ii) with ρ, τ also ρ → τ is a type.

Functionals of type ρ → τ map type-ρ objects to type-τ objects.

PAω,X is the extension of Peano Arithmetic to all types.

Aω,X :=PAω,X+DC, where

DC: axiom of dependent choice for all types

Implies full comprehension for numbers (higher order arithmetic).

Aω[X , d , . . .] results by adding constants dX , . . . with axioms expressing

that (X , d , . . .) is a nonempty metric, hyperbolic, normed, Hilbert

. . . space.

(Some restriction on extensionality necessary)
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A novel form of majorization

y , x functionals of types ρ, ρ̂ := ρ[IN/X ] and aX of type X :

x IN &a
IN y IN :≡ x ≥ y

x IN &a
X yX :≡ x ≥ d(y , a).

For complex types ρ → τ this is extended in a hereditary fashion.

Example:

f ∗ &a
X→X f ≡ ∀n ∈ IN, x ∈ X [n ≥ d(a, x) → f ∗(n) ≥ d(a, f (x))].

f : X → X is nonexpansive (n.e.) if d(f (x), f (y)) ≤ d(x , y).

Then λn.n + b &a
X→X f , if d(a, f (a)) ≤ b.
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Logical Metatheorems for Abstract Spaces X

Since 2005 monotone functional interpretation extended in the above

sense has been used to prove metatheorems with the following features:

From proofs of ∀∃-Theorems, effective bounds can be extracted that

instead of depending on data such as x ∈ X , f : X → X or

sequences (xn) in X only depend on a-majorants

n &a x , f ∗ &a f , g∗ &a (xn),

where n ∈ IN, f ∗, g∗ : IN → IN.

In the metric and hyperbolic case: a ∈ X can be freely chosen

(but the same a for all parameters). Normed linear case: a := 0X .

Crucial: Only properties are allowed that remain stable under the

monotone interpretation: e.g. separability → total boundedness,

strictly convex → uniformly convex etc.

K. Trans. AMS 2005, Gerhardy/K. Trans AMS 2008.
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As special case of general logical metatheorems due to

Gerhardy/K. (Trans. Amer. Math. Soc. 2008) one has:

Corollary (Gerhardy/K., TAMS 2008)

If Aω[X , d , . . .] proves

∀x ∈ P∀y ∈ K∀z ∈ X∀f : X → X
(
f n.e. → ∃v ∈ INA∃

)
,

then one can extract a computable functional Φ : ININ × IN → IN s.t.

for all x ∈ P, b ∈ IN

∀y ∈ K∀z ∈ X∀f : X → X
(
f n.e. ∧ dX (z , f (z)) ≤ b → ∃v ≤ Φ(rx , b)A∃

)
holds in all metric (hyperbolic, . . .) spaces (X , d).

For normed and Hilbert spaces with b ≥ ‖z‖ (K. TAMS 2005).
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Proof Mining in Ergodic Theory

Let X be a Hilbert space, f : X → X linear and nonexpansive.

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i (x) (n ≥ 0).

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS to appear):

in general no computable rate of convergence.

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.
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Based on logical metatheorem discussed above:

Theorem (K./Leu̧stean, to appear in Ergodic Theor. Dynam. Syst.)

Assume that X is a uniformly convex Banach space, η is a modulus of

uniform convexity and f : X → X is a nonexpansive linear operator. Let

b > 0. Then for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all g : IN → IN :

∃n ≤ Φ(ε, g , b, η)∀i , j ∈ [n, n + g(n)]
(
‖Ai (x)− Aj(x)‖ < ε

)
,

where

Φ(ε, g , b, η) := M · h̃K (0), with

M :=
⌈

16b
ε

⌉
, γ := ε

16η
(

ε
8b

)
, K :=

⌈
b
γ

⌉
,

h, h̃ : IN → IN, h(n) := 2(Mn + g(Mn)), h̃(n) := maxi≤n h(i).
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Corollary (K./Leu̧stean, to appear in Ergodic Theor. Dynam. Syst. )

X Hilbert space and f : X → X nonexpansive linear operator. Let b > 0.

Then for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all g : IN → IN :

∃n ≤ Φ(ε, g , b)∀i , j ∈ [n, n + g(n)]
(
‖Ai (x)− Aj(x)‖ < ε

)
,

where Φ is defined as above, but with K :=
⌈

512b2

ε2

⌉
.

Discussion: The Hilbert space case has been treated (again based on our

metatheorem) prior by Avigad-Gerhardy-Towsner (TAMS to appear).

However, the bound obtained by Avigad et al. is less good and matches

our bound only in the special case of isometric f .
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Tao also established (without bound) a uniform version (in a special

case) of the Mean Ergodic Theorem as base step for a generalization to

commuting families of operators.

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques,

reminiscent of those used in [Green-Tao]...’ ‘The main advantage of

working in the finitary setting ... is that the underlying dynamical system

becomes extremely explicit’...‘In proof theory, this finitisation is known as

Gödel functional interpretation...which is also closely related to the

Kreisel no-counterexample interpretation’

(T. Tao: Norm convergence of multiple ergodic averages for commuting

transformations, Ergodic Theor. and Dynam. Syst. 28, 2008)
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Projections and Weak Compactness without separability

(K.2009, to appear in: Festschrift for G. Mints)

Aω[X , 〈·, ·〉] does not have nontrivial comprehension over X -type objects

but proves (using countable choice for X -objects) schematically

for definable closed convex subsets (resp. closed linear subspaces)

the existence of unique best approximations (resp. orthogonal

projections),

for linear functionals L : X → IR with definable graph the Riesz

representation theorem,

the weak compactness of B1(0) (here only countable choice for

arithmetical formulas needed and restricted induction).
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A theorem of F.E. Browder

Using projection to the set of all fixed points of a nonexpansive mapping

U : X → X with U|B1(0) : B1(0) → B1(0) (X Hilbert space) and weak

compactness, Browder showed in 1967:

Theorem[F.E. Browder 1967]: For n ∈ IN, v0 ∈ B1(0) let un be the

unique fixed point of the contraction Un(x) := (1− 1
n )U(x)− 1

nv0. Then

(un) converges towards the fixed point of U that is closest to v0.

Corollary by Metatheorem: There is a functional Φ(k, g) (definable by

primitive recursion and bar recursion of lowest type) such that

∀k ∈ IN∀g : IN → IN∃n ≤ Φ(k, g)∀i , j ∈ [n; n + g(n)] (‖ui − uj‖ < 2−k).

Note that Φ does not depend on U, v0 or X !
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Nonlinear Generalizations of the Mean Ergodic Theorem

Nonlinear generalization based on Halpern iterations (due to

Wittmann 1992, see below).

Nonlinear ergodic theorems of Baillon, Bruck, Reich, Takahashi...

Theorem (Wittmann 1992)

(X , 〈·, ·〉) Hilbert space, C ⊆ X closed convex, f : C → C nonexpansive.

(λn) in [0, 1] with

lim λn = 0,
∞∑

n=1

λn divergent,
∞∑

n=1

|λn+1 − λn| convergent.

Consider the Halpern iteration starting from x ∈ X

xn+1 := λn+1x + (1− λn+1)f (xn).

If f has fixed points, then (xn) converges to the unique fixed point closest

to x .
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Remark

If f is linear and λn := 1
n+1 , then

xn =
1

n + 1

n∑
i=0

f ix .

Theorem (Leustean 2007)

Let X be just normed and T ,C as above and lim λn = 0,
∞∑

n=1
|λn+1 − λn|

convergent and
∞∑

n=1
λn divergent with moduli α, β, θ resp. Then

∀ε(0, 2)∀n ≥ Φ(α, β, θ,M, ε) (‖xn − f (xn)‖ < ε), where

Φ(α, β, θ,M, ε) := max
{
θ
(
β

(
ε

8M

)
+ 1 +

⌈
ln

(
8M
ε

)⌉)
, α

(
ε

4M

)}
,

with M ≥ ‖xn‖+ ‖x‖+ ‖Tx‖ for all n ∈ IN.
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Next step: extraction of effective rate of metastability for (xn).

Proof similar (but more involved) than that of Browder’s theorem

Future research: quantitative version of Baillon’s nonlinear ergodic

theorem.
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Further applications of proof theory to analysis

Numerous further applications in metric fixed point and ergodic

theory (Avigad, Briseid, Gerhardy, Lambov, Leustean, Towsner, K.)

published in: J.Math.Anal.Appl.(4), Trans. Amer. Math. Soc. (3),

Nonlinear Analysis (2), Numer.Funct.Anal.Opt.(2), Fixed Point

Theory (2), Intern. J. of Math. and Statistics (2), Ergod. Theor. and

Dynam. Syst. (2), Proc. Fixed Point Theory (1), J. Nonlinear and

Convex Analysis (1)

Applications to best Chebycheff and L1-approximation: improved

resp. first at all bounds on strong unicity (K., K./Oliva:

Numer.Funct.Anal.Opt., Steklov proc.,...)
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Ulrich Kohlenbach presents an applied form of proof theory that 
has led in recent years to new results in number theory, approxi-
mation theory, nonlinear analysis, geodesic geometry and ergodic 
theory (among others). This applied approach is based on logical 
transformations (so-called proof interpretations) and concerns 
the extraction of effective data (such as bounds) from prima facie 
ineffective proofs as well as new qualitative results such as inde-
pendence of solutions from certain parameters, generalizations  
of proofs by elimination of premises.
The book first develops the necessary logical machinery empha-
sizing novel forms of Gödel‘s famous functional (‚Dialectica‘) 
interpretation. It then establishes general logical metatheorems 
that connect these techniques with concrete mathematics. Finally, 
two extended case studies (one in approximation theory and one 
in fixed point theory) show in detail how this machinery can be 
applied to concrete proofs in different areas of mathematics.
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