
On the Embedding of the MDG Specification Languages in HOL 

Rabeb Mizouni 
ECE Dept, Concordia University. 

Montreal, Quebec, Canada 
mizouni@ece.concordia.ca 

Sofi~ne Tahar 
ECE Dept.Concordia University, 

Montreal, Quebec, Canada 
tahar@ece.concordia.ca 

Paul Curzon 
School of Computing Science, 

Middlesex University, 
London, UK. 

P. Curzon@mdx.ac. uk 

Abstract 
In this paper, we propose an embedding of the MDG input 
languages in HOL. The MDG (Multiway Decision Graph) 
system is a tool for equivalence and model checking. It is 
based on multiway decision graphs that extend Reduced- 
Ordered Binary Decision Diagrams with abstract sorts and 
uninterpreted functions, prime feature of the MDG. The 
HOL system is a higher-order logic theorem prover. It has 
an open user-extensible architecture, giving the possibility 
of  adding expressiveness power to the theorem prover by 
embedding new theories. We have embedded in HOL the 
grammar of the MDG hardware description language, 
MDG-HDL, and the first-order temporal logic, LMDO, used 
to specify properties for the MDG model checker. A Hybrid 
tool for verification, linking HOL with the MDG model 
checker, is proposed as an application of  the developed 
embeddings. 
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1. INTRODUCTION 
Formal Verification [10] has been proposed as a way to 
overcome the limitation of simulation. It tries to 
mathematically prove that an implementation of a system 
fully satisfies its specification. There exists today several 
formal verification approaches like theorem proving, model 
checking, equivalence checking, etc. Each one has its 
advantages and drawbacks. 

Theorem proving has the potential of dealing with large 
designs since it supports both abstraction and hierarchical 
design verification. However, its interactivity and need for 
user expertise make the verification a cumbersome process. 
Decision diagram based verification is fully automated but 
suffers from the state explosion problem. Hence, the 
integration of these two approaches is expected to reduce 
the verification efforts required since it benefits from the 
high expressiveness and scalability of the theorem prover, 
and the autormtion of the model checker. The contribution 
of our work is to embed the specification language of a 
decision diagram based tool, MDG [3], in a theorem prover 
environment, HOL [ 13]. 

The HOL system [13] is based on higher-order logic, and 
was originally intended for hardware verification. Thanks to 
its generality, HOL has been used in many application 
areas. The basic interface to the system is the functional 
language ML. The main advantage of theorem proving is 
the ability to deal with large-scale design. Despite the 
expressive power of higher-order logic and the many 
features offered by the HOL system, the verification 
process is still a cumbersome task since it needs a very 
deep understanding of the design structure and proof 
expertise of the user, which make the verification time- 
consuming. 

The MDG system [3] is a decision diagram based 
verification tool, primarily designed for hardware 
verification and offering a black-box verification approach. 
It provides four kinds of verification procedures: 
combinational equivalence checking, sequential 
equivalence checking, invariant checking, and model 
checking. Multiway decision graphs represent a new class 
of directed acyclic graphs, proposed to overcome the 
limitation of the ROBDD-based methods. The underlying 
logic is ordinary many-sorted first-order logic. The 
vocabulary consists of sorts, constants, variables and 
function symbols, with a distinction between abstract and 
concrete sorts. Concrete sorts have enumeration while 
abstract sorts do not. This enumeration represents a set of 
distinct constants of defined sort. These constants are 
referred to as individual constants. This distinction between 
abstract and concrete sorts leads to a distinction between 
three kinds of function symbols. If the output is from an 
abstract sort, so the function is defined to be an abstract 
function. If all the inputs and the output are from concrete 
sort, so the function is defined to be concrete. And finally, 
if the output of the function is concrete, and at least one of 
its inputs is abstract, the function is defined to be cross- 
function. Concrete function symbols must have explicit 
definition, while abstract function symbols and cross- 
operators are uninterpreted. 

In [9] a hybrid tool and a methodology tailored to perform 
hierarchical hardware verification have been developed at 
the Hardware Verification Group of Concordia University. 
They integrate the HOL theorem prover to the MDG 
equivalence checker. Usually to reduce the verification 
complexity, abstraction techniques and hierarchical 



verification are used. HoweveI; the tool in [9], although 
efficient in many ways, remains limited to concrete data 
sorts. 
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Figure1: HOL and MDG Model Checker Interface 

The primary contribution of our work is to extend the 
capabilities of the previous tool to suppoxt abstract data 
types and thus high-level specification. Furthermore, we aim 
at allowing the user to express and verify properties within 
the theorem prover rather than the whole behavior. For 
these purposes, we propose to formalise in HOL the MDG 
input language for model description MDG-HDL [18], as 
well as the MDG input language of properties, Imdg [17]. 
These formalisations are introduced in HOL as new 
theories. The proposed embedding of both languages in 
HOL will allow us to interface two tools as shown Figure 1. 

The remaining sections of this paper are organised as 
follows. Section 2 contains related work. In Section 3, we 
present the proposed formalisation of the MDG-HDL 
language in HOL. Section 4 describes the embedding of the 
Lmdg temporal logic in HOL. Section 5 proposes an 
application of the defined embeddings. Section 6 finally 
concludes the paper. 

2. RELATED WORK 
Many projects have attempted to integrate model checking 
and theorem proving in order to introduce some automation 
to the latter. Moleover, they tried to integrate a new 
expressiveness within the theorem provers. For these 
purposed, they proposed various ways of embedding 
external tools specification languages in the logic of the 
theorem prover. 
Rajan et al. [ 14] proposed an approach for the integration of 
a propositional ILt-calculus model checker, based on BDDs, 
within an automated proof system PVS [4]. They used t-t- 
calculus as a medium for communicating between PVS and 
the model checker. The ~-calculus was formalised by using 
the higher-order logic of PVS. The temporal operators that 
apply to arbitrary state spaces are given the customary 
fixpoint definitions using the l.t-calculus. These expressions 
were translated to the form required by the model checker. 

The obtained form was then used to verify the subgoals 
generated within PVS. 

Scheinder and Hoffmann [15] linked SMV [12] to HOL using 
PROSPER [6]. They embedded the linear time temporal logic 
LTL in HOL and translated LTL formulae into equivalent 
Automata, a form that can be reasoned about within SMV. 
On successful model checking, the results are returned to 
HOL and turned to theorems. This hybrid tool allows SMV 
to be used as a HOL decision procedure. The deep 
embedding of the SMV specification language in HOL 
allows LTL specifications to be manipulated in HOL. 

Other related projects aimed at embedding the semantic of 
hardware description language in higher-order logic. Kropf 
and Reetz [ 11 ] defined the semantics of a significant subset 
of VHDL in HOL to formalise a compiler generator, 
providing a general framework for various verification 
techniques such as model checking or first-order logic 
theorem proving. In [7], Gordon too defined three different 
semantics for a subset of Verilog for use in different 
applications. One is based on event semantics; the second 
is based on the trace semantics while the third is based on 
cycle semantics. In the same range of idea, Boulton et al. [2] 
presented the semantics embedding of three hardware 
description languages in higher order logic: HOL-FILA, 
HOL-SILAGE, and HOL-VHDL. In the two first languages 
they used a shallow embedding while in the third one they 
used deep embedding. A comparison of these approaches 
is also given. 

More recently, Gordon [8] presented an embedding of the 
Sugar2.0 [1] semantics in higher-order logic supported by 
HOL. The motivation of such work is mainly proving meta- 
theorems with a theorem prover to provide a deeper kind of 
sanity checking, hence developing a machine-readable 
semantics. In addition, Sugar provides ways to write 
properties in both simulation and formal verification, 
providing the users with an interface to combine formal 
verification techniques, both theorem proving and model 
checking, and simulation techniques. 

3. MDG-HDL GRAMMAR EMBEDDING IN HOL 

3.1 MDG-HDL 
The MDG tools accept a Prolog-style hardware description 
language specification language, called MDG-HDL [18], 
which allows the use of abstract variables for representing 
data signals. This MDG-HDL description is then compiled 
into internal MDG data structures. MDG-HDL supports 
structural descriptions, behavioral descriptions, or a mixture 
of both. As part of the MDG software package, the user is 
provided with a large set of pre-defined modules such as 
logic gates, multiplexers, registers, bus drivers, etc. Besides 
the logic gates that only use Boolean signals, all other 



components allow signals with concrete as well as abstract. 
Moreover, a special structure is defined called tables. 
Tables can be used to describe functional blocks in both 
structural and behavioral descriptions. A table is similar to 
the truth table; it has as entry values first-order terms in the 
rows. It is composed of a list of rows. Each row is a list of 
input values and their corresponding output. A default 
value of the output is defined if the input sequence given 
does not fit the defined rows. The table structure as well as 
the MDG components library has been embedded 
previously in HOL [5]. Since the grammar of the language 
itself was not embedded, the differentiation between 
different terms (abstract and concrete) was not possible. A 

3.2 Grammar Embedding 
To embed the abstraction in the hybrid tool presented in [9], 
two alternatives were possible: 
• specify different new HOL datatypes depending on the 

example at hand; or 

• define the full grammar of MDG-HDL in HOL. 

In the first approach, no embedding of the grammar is 
required. It relies on predefined HOL types. For each 
application, the user has to implement the appropriate 
types, which is not practical and requires a certain user 
expertise with HOL. Furthermore, the complexity of the HOL 
specification will increase when the design grows. The fact 
of homogenising types for MDG table entries will also 
introduce ambiguities. In the second approach, we need to 
embed in HOL the full MDG-HDL grammar. This, however, 
offers a format on the way to write the MDG types, 
variables, functions and terms. We experimented both 
altematives, and realized that the absence of formatting in 
the first approach will lead to cumbersome specifications. 
We hence adopted the second alternative. 

To embed the grammar of the MDG-HDL language in HOL, 
it is necessary to cover the syntax of many-sorted first- 
order logic. An MDG sort can be either abstract or concrete. 
In HOL, we define an abstract sort to be of type t~ to string. 
The second parameter in this definition is specified mainly 
to permit the user to impose a specific MDG sort. A 
concrete sort (Boolean sort included) is defined by the list 
of its enumerated values. 

The HOL definition of the MDG sort is: 

/- d~f MDG_sort = ABSTRA CT of  'a string 
/ CONCRETE of  string string list 

Next, predicates are defined to specify the type of the sort 
we are dealing with. 

/- d~f (IsConcreteSort (ABSTRACT Abs MDG_name) = F ) / x  
(IsConcreteSort (CONCRETE Conc val_list) = T) 

IsConcreteSort returns true if the type is of concrete sort. 
Similarly, we define a predicate to test if the type is of the 
abstract sort. The variables are defined according to their 
sorts. A function is defined by its domain, which is a list of 
concrete variables, abstract variables or a mixture of both, 
and its range, which is a unique output. The type of the 
function is determined according to its domain and range. If 
the output is from an abstract sort, so the function is 
defined to be an abstract function. If all the inputs and the 
output are from concrete sort, so the function is defined to 
be concrete. And finally, if the output of the function is 
concrete, and at least one of its inputs is abstract, the 
function is defined to be cross-function. 

/- d~u MD G_Fu n = 
MDG_FUN of  string MDG_VAR list MDG_VAR 

Some predicates are set to determine the kind of the 
function we define: abstract, concrete or a cross function. 
Since the domain of the function is a list of variables, to test 
if the function is concrete, we should test if the inputs and 
the outputs are of concrete sort. So, we define a predicate to 
determine recursively if the list is of concrete variables. The 
test is first done on h, the head of the list, and is repeated 
recursively on tl, the tail of the list, until reaching the empty 
list. 

/- clef Concrete VarList(h "tl) = ((IsConcrete Var h) ^ 
(Concrete VarList tO) ^ 
(Concrete VarList []  = T) 

Hence, a function is concrete if both its domain and range 
are concrete: 

/- defconcreteFunc (MDG_FUN name InputVarList 
Output Var) = 

(Concrete VarList InputVarList) ^ 
(IsConcrete Variable Output Var) 

Atter defining all the different elements of the MDG 
vocabulary, we can define the different kinds of MDG terms 
MDG_terms. An MDG_term is either: 
• a concrete constant, CONC_Const, one of the concrete 

sort enumeration; 

• a generic constant, GE_Const, a constant defined for 
an abstract sort; 

• a variable, VAR_Term, either from a concrete sort or an 
abstract sort; or 

• a composed term. 

The latter is done using the constructor TERM. It takes as 
argument a defined MDG Term and returns an MDG Term 
The obtained HOL definition is: 



/- def MDG_term = GE_Const o f  'a 
/ CONC_Const o f  string 
/ VAR_Term of  MDG_VAR 
/ FN_ Term of  MDG_Fun 
/ TERM of  MDG_term MDG_term 

For the MDG tables, we kept the same defined structure as 

in [5], where we impose that the table entry should be either 
a don't care value or an MDG term. 

/- def Table_Val = TABLE_VAL of  "a MDG_term 
/ DONT_CARE 

In addition to the embedding of the grammar, we added to 
the theory developed in [5] some abstract components that 
previously were defined only for the Boolean type, such as 
the multiplexer or the register. These components have 
abstract inputs and abstract output. For example, the 
multiplexer component is defined as follow: 

/- defmdg_mux x 1 X2 (y:num b o o l )  z = 

V t. (z 0 = i f ( y  0 then (X 2 t) else (Xlt) 

Another example is the one of the MDG transform 
component. An MDG transform is a black-box component 
that implements any function. 

/-defmdg_transformxlx2 = Vt. 3y.  (x20 =Y (XIO 

As an application of our embedding, we propose in the next 
section the example of an abstract counter. Its specification 
and implementation are written in HOL according to the 
embedded theory. A proof to verify the equivalence of both 
is conducted in HOL 

3.3 Abstract-Counter Example 
We Consider a synchronous circuit which consists of a 
data register count, two multiplexers muxl and mux2, and 
three functional blocks symbols i nc ,  dec, and eqz The 
functions inc and dec take as input count and produce an 
abstract output inc(count) and dec(counO, respectively. 
The cross-term eqz takes as input count and produces a 
concrete output of  sort bool. y, the select signal of the 
multiplexer, is the input of the counter. Count' is the output 
of  the counter. 
The transition relation of this machine is as follow: 

R -  [ (Z = 0) ^ count '=  inc (count)] v 
[ (y_ = 1) ^ eqz (count) : l) ^ c o u n t ' :  dec(count)]v 
[ (y_ = 1) ^ eqz (count) = l ^ count' = count] 

The HOL Specification 
In this example, we have an abstract sort, two abstract 
functions and a cross-function. First, we define an abstract 
sort 'abs'. Second, we specify the variables derived from it, 

and finally we declare the different functions. Furthermore, 

we add the definition of the generic constants derived from 
the abstract sort 'abs'" abs_val. In HOL, the output of the 

tables should be defined as signals. Hence, we define them 
as functions of time ~, giving the series of values of the 

signal over time" 

/- defabsSIG = ~ (t:num). abs_val 
/- def decSIG = ~ (t:num). dec_abs_val 
/-aef incSIG =. ~ (t:num). inc_abs_val 
/- def dec_incSIG = ~ (t:num). abs_val 

In terms of a truth table, the counter behavior is given in 
Table 1; where n_count represents count', and eqz 
represents eqz(counO" 

Table 1. Abstract -Counter Behavior 

count  eqz y n _ c o u n t  

abs_val * F inc_abs_val 

inc_abs_val F T abs_val 

abs_val T T abs_val 

abs_val F T dec__abs_val 

Before writing the table specification in HOL, we have to 
homogenise its inputs. Therefore, we define functions to 
map from the initial to the desired type. As an example, we 
give here the definition of the bool_to_MDGTerm function, 

which maps the Boolean type to a concrete MDG type. 

/-defbool_to_MDGTerm:( bool string MDG_term) b = 
i f  (b = T) then (CONC_Const "T") 

else (CONC_Const "F") 

In HOL terms, the counter specification is equivalent to: 

/- Clef COUNTER_TAB (count) (v : (num 
(y: (num bool))(n_count) = 

bool)) 

[TABLE • bool_to_MDGTerm o v; bool_to_MDGTerm o y] 
(n_state o SUC) 

[ [ TABLE_ VAL (abs_val);DONT_CARE; 
TABLE_ VAL (CONC_Const "F" ) ]; 

[TABLE_ VAL(inc_abs_val) ; TABLE_VAL (CONC_Const"F 
")" TABLE_VAL (CONC_Const"T")]" 

[ T A B L E  VAL (abs_val); TABLE_VAL(CONC_Const"F")" 
TABLE_VAL(CONC_Const"T") ]; 

1 ~, t. x means that x is function of t. 



[ TABLE_VAL (abs_val); TABLE_ VAL(CONC_Const"T")" 
TABLE_VAL(CONC_Const"T") ] ] 

[ incSIG;dec_incSIG;decSIG;absSIG ] absSIG 

The first four rows represent the possible inputs 
combination. The fourth list represents the output for each 
row respectively. And finally, the absSIG is the default 
value of the output if the input sequence is different from 
what is specified. 

:~ 
:I~:i~ I x !  " : 

Figure2 • Abstract Counter Implementation 

The HOL Implementation 
The implementation of the abstract counter is given in 
Figure 2. It is composed of two multiplexers, one register for 
the next state n_count, two black-box (uninterpreted) 
functions Dec and Ine, and finally one MDG transform 
block for the cross function eqz. We initialised the count 
value using an initial predicate that sets the variable count 
at abs_val (c.f Figure2). 

/- aeuCOUNTER_IMP (v) (y:num bool) (n_count) = 
_Tx z w (count:num string MDG_term) countl. 

(Reg countl n_count) A 
(Muxl x z (y:num bool) countl ) ^ 
(Inc n_count x) ^ 
(Mux2 n_count w (v) z) ^ 
(Dec ( n_count) (w)) ^ 
(Eqz ( n_count) (v)) ^ 
(Initial count) 

The next objective is to verify in HOL that the 
implementation of the counter implies its specification. The 
proof should be done for any generic constant our counter 
takes. The goal has an implication pattern specifying that 
the implementation we propose implies the specification: 

/- aef P' count v y n_count abs_val . 
COUNTER_IMP v y n_count ~ COUNTER_TAB count v y 
n c o u n t  

The proof was conducted such that all definitions are first 
rewritten, and then using a combination of two predefined 
HOL tactics: ARITH_TAC and PROVE_TAC. The First one 
is used to split the goal to several subgoals. After that each 
subgoal is proven individually. The original goal is proven 
when all subgoals are proven. 

4. LMDG EMBEDDING IN HOL 

4.1 ~DG 
I-MI~C [17] is the properties input language of the MDG 
model checker. It represents a subset of the Abstract CTL* 
language [17]. This logic is used to specify properties for 
the computation model. Only universal path quantification 
is possible with the current version of MDG model checker. 
The ploperties allowed in IMoa can have the following 
templates: 

Property : 

A (Next_let_formula) 
lAG (Next_let..formula) 
/AF (Next_let formula) 
/A ((Next_let_formula) U (Next_let_formula)) 
lAG ((Next_let_formula) ::~ F (Next_let_formula)) 
lAG ((Next_let_formula) ~ ((Next_let_formula) U 

(Next_let formula))) 

where the Next_Let_Formula is defined to be a nesting 
formula, or a basic formula. The latter represents the 
equality between the different kind of state variables, 
conjunction and disjunction of terms. We present in the 
next section the embedding of this language in HOL 
allowing us to express temporal properties in the theorem 
prover. 

4.2 LMDG Embedding 
In order to embed I~DC in HOL, it is important to respect the 
semantics of the original language. Generally, properties are 
defined according to two notions: path and state. A path is 
a sequence of states, while a state is an assignment to the 
set of state, input and output variables. A full path starting 
from a state si is denoted by: 

n = (S i, Si+l, Si+2,--.)  

All formulae in I-MDG are path formulae. Hence, given a 
property in I~DG for a model under a given interpretation ~g, 
the property holds on the model if and only if the property 
is true for all paths starting from each initial state. 
We write ~,6 1 = p to means that a path formula p is true at 
path r~ according to a model a Hence, the semantics of the 
Foperator will be: 

(/I;,(Y) I= Fp iff(~, cy) I= p for some j _> i 

Since I-MDG is an Abstract CTL* like language [17], we 
divide the properties in two classes: the first is the CTL* 
[10] like properties and the second is the LTL [10] like 
properties. For the latter ones, we define a property 
according to the predicate we want to verify. Each logical 
proposition is a function of the path, expressed here by s 



which can be formulated as a history function keeping a 
trace of the states on the path. 
Since I+ms is an Abstract CTL* like language [17], we 
divide the properties in two classes: the first is the CTL* 
[10] like properties and the second is the LTL [10] like 
properties. For the latter ones, we define a property 
according to the predicate we want to verify. Each logical 
proposition is a function of the path, expressed here by s 
which can be formulated as a history function keeping a 
trace of the states on the path. 

/-aeuLMDG_F p s =3 p s t 

For each temporal operator, a HOL definition is set. Besides, 
the conjunction, disjunction, and implication of predicates 
are defined as functions of the proposition. 

/ -aeuLMDG_CONJpl  p2  s t = (pl  s t) v (p2 s t) 
/ -ae fLMDG_DISJ  p l  p2  s t = (pl  s t) ^ (p2 s t) 

/ -aefLMDG_IMP p l  p2  s t = - ,(pl  s t) v (p2 s t) 

The second class of properties is the CTL* like ones. Here, 
we define the property according to the predicate we want 
to define as well as its circuit. 

/ - de f  L M D G _ A G  R p = V ((R s) ^ ( V  (p s t))) 
/ -de f  L M D G _ A F  R p = V ((R s) ^ ( V  (p s 0 ) )  

Introducing the notion of circuit in the property denotes the 
fact that each path considered belongs to the design 
description we have. In addition, when verifying a 
hierarchical &sign, this feature raises the possibility of 
checking a property of a specific sub-block since the 
property itself is defined according to this sub-block. We 
specify a HOL definition for each CTL* operator in the I-MDS 
language. To get the appropriate template for the MDG tool, 
the combination of these formulae is done by the user. 
Templates that do not exist in the LMDS language hence can 
be expressed. As en example, the property: 

AF ((Next_let_formula) U (Next_let_formula)) 

can be defined in HOL while it does not belong to the 
syntax of ~ .  Therefore, the embedding we propose is 
more expressive than the original one. 

4.3 Abstract Counter Example 
To illustrate the proposed I~Ds embedding, we present here 
a liveness property of the abstract counter example used in 
section 3.3. 
According to the specification of the counter, when the 
control signal y is equal to false,  independently from the 
value of the cross-function eqg the counter must increment 
the input. Using the MDG syntax, this property is expressed 
as fo llows : 

A G  (( y = O) ::~ (X (count = inc(count)))  

Where X represents the next temporal operator. 
In terms of the embedded theory in HOL, the property 

corresponds to: 

/-defLMDG_AG ( COUNTER_TAB counO ^ 
(LMDG_IMP 

(LMDG_CONJ ( /~count  (t: num). y= false)  
(~, count  (t: num). count  t =abs_val)) 

(LMDG_X (/~count O. n_count  t = inc_abs_val))  

5. APPLICATION: HOL-MDG HYBRID TOOL 
Having the embedding of the input languages of MDG in 
HOL raises the possibility of passing HOL goals out to 
MDG. To this end, we developed a hybrid tool, HOL-MDG, 
around the embedding. Its verification procedure is 
depicted in Figure 3. During the verification procedure, the 
user starts by giving the HOL specification, the HOL 
property and the goal he wants to prove. If this goal fits the 
required pattern, the respective MDG files are generated. 
The latter are sent to MDG for the model checking 
verification. If the.property holds, a HOL theorem is set. 
However, if the verification within MDG tool fails, we have 
to develop the proof interactively within HOL. 

]? Call Ml)Gand I 

+ ~  . . 

| 

I ~ ; ~ n ~ m  I I:~'# '"~;:'~L~fl 

F igue3  : H O L - M D G  Veri f icat ion  Procedure  

Obviously, the tool would not accept any arbitrary HOL 
specification. It will only accept MDG-styles specifications 
and properties. We make use of the embedded HOL theories 
to express both the description model, and the properties. 



There are different ways to formalise a goal in HOL. 
However, when using the proposed tool, the goal should be 
an implication according to this form: 

/-def Model ~ Property 

Since the verification is done in MDG, we need to formalize 
the (MDG) result in HOL. Therefore, we convert the MDG 
results into a form that can be used [ 16]: 

/-def FormalisedMDGresult =~ Model ~ Property 

The general conversion theorem into HOL has been proved 
in [16]. So, the theorem can be instantiated for any design 
and any property under consideration. 

6. CONCLUSION 
We have described in this paper an embedding of the MDG 
input languages in HOL: the MDG-HDL grammar and the 
l-Moc temporal logic. The embedding of the former is 
achieved by covering the syntax of the many-sorted first- 
order logic. It allowed us to extend the tool in [9] with 
abstract types providing a way to write higher-level 
specification and pass them to the MDG model checker. 
While the embedding of LMDC is achieved by doing a 
mapping one to one to all the temporal operators, both LTL 
and CTL*, used in the language. This allowed us to define 
l-~oc like properties in HOL. As an application of these 
embeddings, we plesented a hybrid tool linking HOL and 
MDG model checker. The hybrid tool takes as input 
specifications and properties written in MDG-HDL and LMDC 
languages, respectively based on the developed 
embeddings in HOL. 
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