
On the Embedding of the MDG Specification Languages in HOL

Rabeb Mizouni
ECE Dept, Concordia University.

Montreal, Quebec, Canada
mizouni@ece.concordia.ca

Sofi~ne Tahar
ECE Dept.Concordia University,

Montreal, Quebec, Canada
tahar@ece.concordia.ca

Paul Curzon
School of Computing Science,

Middlesex University,
London, UK.

P. Curzon@mdx.ac. uk

Abstract
In this paper, we propose an embedding of the MDG input
languages in HOL. The MDG (Multiway Decision Graph)
system is a tool for equivalence and model checking. It is
based on multiway decision graphs that extend Reduced-
Ordered Binary Decision Diagrams with abstract sorts and
uninterpreted functions, prime feature of the MDG. The
HOL system is a higher-order logic theorem prover. It has
an open user-extensible architecture, giving the possibility
of adding expressiveness power to the theorem prover by
embedding new theories. We have embedded in HOL the
grammar of the MDG hardware description language,
MDG-HDL, and the first-order temporal logic, LMDO, used
to specify properties for the MDG model checker. A Hybrid
tool for verification, linking HOL with the MDG model
checker, is proposed as an application of the developed
embeddings.

Keywords
Formal Hardware Verification, Theorem Proving, Model
Checking, Hardware Description Languages, Temporal
Logic, Language Embedding.

1. INTRODUCTION
Formal Verification [10] has been proposed as a way to
overcome the limitation of simulation. It tries to
mathematically prove that an implementation of a system
fully satisfies its specification. There exists today several
formal verification approaches like theorem proving, model
checking, equivalence checking, etc. Each one has its
advantages and drawbacks.

Theorem proving has the potential of dealing with large
designs since it supports both abstraction and hierarchical
design verification. However, its interactivity and need for
user expertise make the verification a cumbersome process.
Decision diagram based verification is fully automated but
suffers from the state explosion problem. Hence, the
integration of these two approaches is expected to reduce
the verification efforts required since it benefits from the
high expressiveness and scalability of the theorem prover,
and the autormtion of the model checker. The contribution
of our work is to embed the specification language of a
decision diagram based tool, MDG [3], in a theorem prover
environment, HOL [13].

The HOL system [13] is based on higher-order logic, and
was originally intended for hardware verification. Thanks to
its generality, HOL has been used in many application
areas. The basic interface to the system is the functional
language ML. The main advantage of theorem proving is
the ability to deal with large-scale design. Despite the
expressive power of higher-order logic and the many
features offered by the HOL system, the verification
process is still a cumbersome task since it needs a very
deep understanding of the design structure and proof
expertise of the user, which make the verification time-
consuming.

The MDG system [3] is a decision diagram based
verification tool, primarily designed for hardware
verification and offering a black-box verification approach.
It provides four kinds of verification procedures:
combinational equivalence checking, sequential
equivalence checking, invariant checking, and model
checking. Multiway decision graphs represent a new class
of directed acyclic graphs, proposed to overcome the
limitation of the ROBDD-based methods. The underlying
logic is ordinary many-sorted first-order logic. The
vocabulary consists of sorts, constants, variables and
function symbols, with a distinction between abstract and
concrete sorts. Concrete sorts have enumeration while
abstract sorts do not. This enumeration represents a set of
distinct constants of defined sort. These constants are
referred to as individual constants. This distinction between
abstract and concrete sorts leads to a distinction between
three kinds of function symbols. If the output is from an
abstract sort, so the function is defined to be an abstract
function. If all the inputs and the output are from concrete
sort, so the function is defined to be concrete. And finally,
if the output of the function is concrete, and at least one of
its inputs is abstract, the function is defined to be cross-
function. Concrete function symbols must have explicit
definition, while abstract function symbols and cross-
operators are uninterpreted.

In [9] a hybrid tool and a methodology tailored to perform
hierarchical hardware verification have been developed at
the Hardware Verification Group of Concordia University.
They integrate the HOL theorem prover to the MDG
equivalence checker. Usually to reduce the verification
complexity, abstraction techniques and hierarchical

verification are used. HoweveI; the tool in [9], although
efficient in many ways, remains limited to concrete data
sorts.

.oL ,, Mo.o

! Th.eorem Result !

Figure1: HOL and MDG Model Checker Interface

The primary contribution of our work is to extend the
capabilities of the previous tool to suppoxt abstract data
types and thus high-level specification. Furthermore, we aim
at allowing the user to express and verify properties within
the theorem prover rather than the whole behavior. For
these purposes, we propose to formalise in HOL the MDG
input language for model description MDG-HDL [18], as
well as the MDG input language of properties, Imdg [17].
These formalisations are introduced in HOL as new
theories. The proposed embedding of both languages in
HOL will allow us to interface two tools as shown Figure 1.

The remaining sections of this paper are organised as
follows. Section 2 contains related work. In Section 3, we
present the proposed formalisation of the MDG-HDL
language in HOL. Section 4 describes the embedding of the
Lmdg temporal logic in HOL. Section 5 proposes an
application of the defined embeddings. Section 6 finally
concludes the paper.

2. RELATED WORK
Many projects have attempted to integrate model checking
and theorem proving in order to introduce some automation
to the latter. Moleover, they tried to integrate a new
expressiveness within the theorem provers. For these
purposed, they proposed various ways of embedding
external tools specification languages in the logic of the
theorem prover.
Rajan et al. [14] proposed an approach for the integration of
a propositional ILt-calculus model checker, based on BDDs,
within an automated proof system PVS [4]. They used t-t-
calculus as a medium for communicating between PVS and
the model checker. The ~-calculus was formalised by using
the higher-order logic of PVS. The temporal operators that
apply to arbitrary state spaces are given the customary
fixpoint definitions using the l.t-calculus. These expressions
were translated to the form required by the model checker.

The obtained form was then used to verify the subgoals
generated within PVS.

Scheinder and Hoffmann [15] linked SMV [12] to HOL using
PROSPER [6]. They embedded the linear time temporal logic
LTL in HOL and translated LTL formulae into equivalent
Automata, a form that can be reasoned about within SMV.
On successful model checking, the results are returned to
HOL and turned to theorems. This hybrid tool allows SMV
to be used as a HOL decision procedure. The deep
embedding of the SMV specification language in HOL
allows LTL specifications to be manipulated in HOL.

Other related projects aimed at embedding the semantic of
hardware description language in higher-order logic. Kropf
and Reetz [11] defined the semantics of a significant subset
of VHDL in HOL to formalise a compiler generator,
providing a general framework for various verification
techniques such as model checking or first-order logic
theorem proving. In [7], Gordon too defined three different
semantics for a subset of Verilog for use in different
applications. One is based on event semantics; the second
is based on the trace semantics while the third is based on
cycle semantics. In the same range of idea, Boulton et al. [2]
presented the semantics embedding of three hardware
description languages in higher order logic: HOL-FILA,
HOL-SILAGE, and HOL-VHDL. In the two first languages
they used a shallow embedding while in the third one they
used deep embedding. A comparison of these approaches
is also given.

More recently, Gordon [8] presented an embedding of the
Sugar2.0 [1] semantics in higher-order logic supported by
HOL. The motivation of such work is mainly proving meta-
theorems with a theorem prover to provide a deeper kind of
sanity checking, hence developing a machine-readable
semantics. In addition, Sugar provides ways to write
properties in both simulation and formal verification,
providing the users with an interface to combine formal
verification techniques, both theorem proving and model
checking, and simulation techniques.

3. MDG-HDL GRAMMAR EMBEDDING IN HOL

3.1 MDG-HDL
The MDG tools accept a Prolog-style hardware description
language specification language, called MDG-HDL [18],
which allows the use of abstract variables for representing
data signals. This MDG-HDL description is then compiled
into internal MDG data structures. MDG-HDL supports
structural descriptions, behavioral descriptions, or a mixture
of both. As part of the MDG software package, the user is
provided with a large set of pre-defined modules such as
logic gates, multiplexers, registers, bus drivers, etc. Besides
the logic gates that only use Boolean signals, all other

components allow signals with concrete as well as abstract.
Moreover, a special structure is defined called tables.
Tables can be used to describe functional blocks in both
structural and behavioral descriptions. A table is similar to
the truth table; it has as entry values first-order terms in the
rows. It is composed of a list of rows. Each row is a list of
input values and their corresponding output. A default
value of the output is defined if the input sequence given
does not fit the defined rows. The table structure as well as
the MDG components library has been embedded
previously in HOL [5]. Since the grammar of the language
itself was not embedded, the differentiation between
different terms (abstract and concrete) was not possible. A

3.2 Grammar Embedding
To embed the abstraction in the hybrid tool presented in [9],
two alternatives were possible:
• specify different new HOL datatypes depending on the

example at hand; or

• define the full grammar of MDG-HDL in HOL.

In the first approach, no embedding of the grammar is
required. It relies on predefined HOL types. For each
application, the user has to implement the appropriate
types, which is not practical and requires a certain user
expertise with HOL. Furthermore, the complexity of the HOL
specification will increase when the design grows. The fact
of homogenising types for MDG table entries will also
introduce ambiguities. In the second approach, we need to
embed in HOL the full MDG-HDL grammar. This, however,
offers a format on the way to write the MDG types,
variables, functions and terms. We experimented both
altematives, and realized that the absence of formatting in
the first approach will lead to cumbersome specifications.
We hence adopted the second alternative.

To embed the grammar of the MDG-HDL language in HOL,
it is necessary to cover the syntax of many-sorted first-
order logic. An MDG sort can be either abstract or concrete.
In HOL, we define an abstract sort to be of type t~ to string.
The second parameter in this definition is specified mainly
to permit the user to impose a specific MDG sort. A
concrete sort (Boolean sort included) is defined by the list
of its enumerated values.

The HOL definition of the MDG sort is:

/- d~f MDG_sort = ABSTRA CT of 'a string
/ CONCRETE of string string list

Next, predicates are defined to specify the type of the sort
we are dealing with.

/- d~f (IsConcreteSort (ABSTRACT Abs MDG_name) = F) / x
(IsConcreteSort (CONCRETE Conc val_list) = T)

IsConcreteSort returns true if the type is of concrete sort.
Similarly, we define a predicate to test if the type is of the
abstract sort. The variables are defined according to their
sorts. A function is defined by its domain, which is a list of
concrete variables, abstract variables or a mixture of both,
and its range, which is a unique output. The type of the
function is determined according to its domain and range. If
the output is from an abstract sort, so the function is
defined to be an abstract function. If all the inputs and the
output are from concrete sort, so the function is defined to
be concrete. And finally, if the output of the function is
concrete, and at least one of its inputs is abstract, the
function is defined to be cross-function.

/- d~u MD G_Fu n =
MDG_FUN of string MDG_VAR list MDG_VAR

Some predicates are set to determine the kind of the
function we define: abstract, concrete or a cross function.
Since the domain of the function is a list of variables, to test
if the function is concrete, we should test if the inputs and
the outputs are of concrete sort. So, we define a predicate to
determine recursively if the list is of concrete variables. The
test is first done on h, the head of the list, and is repeated
recursively on tl, the tail of the list, until reaching the empty
list.

/- clef Concrete VarList(h "tl) = ((IsConcrete Var h) ^
(Concrete VarList tO) ^
(Concrete VarList [] = T)

Hence, a function is concrete if both its domain and range
are concrete:

/- defconcreteFunc (MDG_FUN name InputVarList
Output Var) =

(Concrete VarList InputVarList) ^
(IsConcrete Variable Output Var)

Atter defining all the different elements of the MDG
vocabulary, we can define the different kinds of MDG terms
MDG_terms. An MDG_term is either:
• a concrete constant, CONC_Const, one of the concrete

sort enumeration;

• a generic constant, GE_Const, a constant defined for
an abstract sort;

• a variable, VAR_Term, either from a concrete sort or an
abstract sort; or

• a composed term.

The latter is done using the constructor TERM. It takes as
argument a defined MDG Term and returns an MDG Term
The obtained HOL definition is:

/- def MDG_term = GE_Const o f 'a
/ CONC_Const o f string
/ VAR_Term of MDG_VAR
/ FN_ Term of MDG_Fun
/ TERM of MDG_term MDG_term

For the MDG tables, we kept the same defined structure as

in [5], where we impose that the table entry should be either
a don't care value or an MDG term.

/- def Table_Val = TABLE_VAL of "a MDG_term
/ DONT_CARE

In addition to the embedding of the grammar, we added to
the theory developed in [5] some abstract components that
previously were defined only for the Boolean type, such as
the multiplexer or the register. These components have
abstract inputs and abstract output. For example, the
multiplexer component is defined as follow:

/- defmdg_mux x 1 X2 (y:num b o o l) z =

V t. (z 0 = i f (y 0 then (X 2 t) else (Xlt)

Another example is the one of the MDG transform
component. An MDG transform is a black-box component
that implements any function.

/-defmdg_transformxlx2 = Vt. 3y. (x20 =Y (XIO

As an application of our embedding, we propose in the next
section the example of an abstract counter. Its specification
and implementation are written in HOL according to the
embedded theory. A proof to verify the equivalence of both
is conducted in HOL

3.3 Abstract-Counter Example
We Consider a synchronous circuit which consists of a
data register count, two multiplexers muxl and mux2, and
three functional blocks symbols i nc , dec, and eqz The
functions inc and dec take as input count and produce an
abstract output inc(count) and dec(counO, respectively.
The cross-term eqz takes as input count and produces a
concrete output of sort bool. y, the select signal of the
multiplexer, is the input of the counter. Count' is the output
of the counter.
The transition relation of this machine is as follow:

R - [(Z = 0) ^ count '= inc (count)] v
[(y_ = 1) ^ eqz (count) : l) ^ c o u n t ' : dec(count)]v
[(y_ = 1) ^ eqz (count) = l ^ count' = count]

The HOL Specification
In this example, we have an abstract sort, two abstract
functions and a cross-function. First, we define an abstract
sort 'abs'. Second, we specify the variables derived from it,

and finally we declare the different functions. Furthermore,

we add the definition of the generic constants derived from
the abstract sort 'abs'" abs_val. In HOL, the output of the

tables should be defined as signals. Hence, we define them
as functions of time ~, giving the series of values of the

signal over time"

/- defabsSIG = ~ (t:num). abs_val
/- def decSIG = ~ (t:num). dec_abs_val
/-aef incSIG =. ~ (t:num). inc_abs_val
/- def dec_incSIG = ~ (t:num). abs_val

In terms of a truth table, the counter behavior is given in
Table 1; where n_count represents count', and eqz
represents eqz(counO"

Table 1. Abstract -Counter Behavior

count eqz y n _ c o u n t

abs_val * F inc_abs_val

inc_abs_val F T abs_val

abs_val T T abs_val

abs_val F T dec__abs_val

Before writing the table specification in HOL, we have to
homogenise its inputs. Therefore, we define functions to
map from the initial to the desired type. As an example, we
give here the definition of the bool_to_MDGTerm function,

which maps the Boolean type to a concrete MDG type.

/-defbool_to_MDGTerm:(bool string MDG_term) b =
i f (b = T) then (CONC_Const "T")

else (CONC_Const "F")

In HOL terms, the counter specification is equivalent to:

/- Clef COUNTER_TAB (count) (v : (num
(y: (num bool))(n_count) =

bool))

[TABLE • bool_to_MDGTerm o v; bool_to_MDGTerm o y]
(n_state o SUC)

[[TABLE_ VAL (abs_val);DONT_CARE;
TABLE_ VAL (CONC_Const "F")];

[TABLE_ VAL(inc_abs_val) ; TABLE_VAL (CONC_Const"F
")" TABLE_VAL (CONC_Const"T")]"

[T A B L E VAL (abs_val); TABLE_VAL(CONC_Const"F")"
TABLE_VAL(CONC_Const"T")];

1 ~, t. x means that x is function of t.

[TABLE_VAL (abs_val); TABLE_ VAL(CONC_Const"T")"
TABLE_VAL(CONC_Const"T")]]

[incSIG;dec_incSIG;decSIG;absSIG] absSIG

The first four rows represent the possible inputs
combination. The fourth list represents the output for each
row respectively. And finally, the absSIG is the default
value of the output if the input sequence is different from
what is specified.

:~
:I~:i~ I x ! " :

Figure2 • Abstract Counter Implementation

The HOL Implementation
The implementation of the abstract counter is given in
Figure 2. It is composed of two multiplexers, one register for
the next state n_count, two black-box (uninterpreted)
functions Dec and Ine, and finally one MDG transform
block for the cross function eqz. We initialised the count
value using an initial predicate that sets the variable count
at abs_val (c.f Figure2).

/- aeuCOUNTER_IMP (v) (y:num bool) (n_count) =
_Tx z w (count:num string MDG_term) countl.

(Reg countl n_count) A
(Muxl x z (y:num bool) countl) ^
(Inc n_count x) ^
(Mux2 n_count w (v) z) ^
(Dec (n_count) (w)) ^
(Eqz (n_count) (v)) ^
(Initial count)

The next objective is to verify in HOL that the
implementation of the counter implies its specification. The
proof should be done for any generic constant our counter
takes. The goal has an implication pattern specifying that
the implementation we propose implies the specification:

/- aef P' count v y n_count abs_val .
COUNTER_IMP v y n_count ~ COUNTER_TAB count v y
n c o u n t

The proof was conducted such that all definitions are first
rewritten, and then using a combination of two predefined
HOL tactics: ARITH_TAC and PROVE_TAC. The First one
is used to split the goal to several subgoals. After that each
subgoal is proven individually. The original goal is proven
when all subgoals are proven.

4. LMDG EMBEDDING IN HOL

4.1 ~DG
I-MI~C [17] is the properties input language of the MDG
model checker. It represents a subset of the Abstract CTL*
language [17]. This logic is used to specify properties for
the computation model. Only universal path quantification
is possible with the current version of MDG model checker.
The ploperties allowed in IMoa can have the following
templates:

Property :

A (Next_let_formula)
lAG (Next_let..formula)
/AF (Next_let formula)
/A ((Next_let_formula) U (Next_let_formula))
lAG ((Next_let_formula) ::~ F (Next_let_formula))
lAG ((Next_let_formula) ~ ((Next_let_formula) U

(Next_let formula)))

where the Next_Let_Formula is defined to be a nesting
formula, or a basic formula. The latter represents the
equality between the different kind of state variables,
conjunction and disjunction of terms. We present in the
next section the embedding of this language in HOL
allowing us to express temporal properties in the theorem
prover.

4.2 LMDG Embedding
In order to embed I~DC in HOL, it is important to respect the
semantics of the original language. Generally, properties are
defined according to two notions: path and state. A path is
a sequence of states, while a state is an assignment to the
set of state, input and output variables. A full path starting
from a state si is denoted by:

n = (S i, Si+l, Si+2,--.)

All formulae in I-MDG are path formulae. Hence, given a
property in I~DG for a model under a given interpretation ~g,
the property holds on the model if and only if the property
is true for all paths starting from each initial state.
We write ~,6 1 = p to means that a path formula p is true at
path r~ according to a model a Hence, the semantics of the
Foperator will be:

(/I;,(Y) I= Fp iff(~, cy) I= p for some j _> i

Since I-MDG is an Abstract CTL* like language [17], we
divide the properties in two classes: the first is the CTL*
[10] like properties and the second is the LTL [10] like
properties. For the latter ones, we define a property
according to the predicate we want to verify. Each logical
proposition is a function of the path, expressed here by s

which can be formulated as a history function keeping a
trace of the states on the path.
Since I+ms is an Abstract CTL* like language [17], we
divide the properties in two classes: the first is the CTL*
[10] like properties and the second is the LTL [10] like
properties. For the latter ones, we define a property
according to the predicate we want to verify. Each logical
proposition is a function of the path, expressed here by s
which can be formulated as a history function keeping a
trace of the states on the path.

/-aeuLMDG_F p s =3 p s t

For each temporal operator, a HOL definition is set. Besides,
the conjunction, disjunction, and implication of predicates
are defined as functions of the proposition.

/ -aeuLMDG_CONJpl p2 s t = (pl s t) v (p2 s t)
/ -ae fLMDG_DISJ p l p2 s t = (pl s t) ^ (p2 s t)

/ -aefLMDG_IMP p l p2 s t = - ,(pl s t) v (p2 s t)

The second class of properties is the CTL* like ones. Here,
we define the property according to the predicate we want
to define as well as its circuit.

/ - de f L M D G _ A G R p = V ((R s) ^ (V (p s t)))
/ -de f L M D G _ A F R p = V ((R s) ^ (V (p s 0))

Introducing the notion of circuit in the property denotes the
fact that each path considered belongs to the design
description we have. In addition, when verifying a
hierarchical &sign, this feature raises the possibility of
checking a property of a specific sub-block since the
property itself is defined according to this sub-block. We
specify a HOL definition for each CTL* operator in the I-MDS
language. To get the appropriate template for the MDG tool,
the combination of these formulae is done by the user.
Templates that do not exist in the LMDS language hence can
be expressed. As en example, the property:

AF ((Next_let_formula) U (Next_let_formula))

can be defined in HOL while it does not belong to the
syntax of ~ . Therefore, the embedding we propose is
more expressive than the original one.

4.3 Abstract Counter Example
To illustrate the proposed I~Ds embedding, we present here
a liveness property of the abstract counter example used in
section 3.3.
According to the specification of the counter, when the
control signal y is equal to false, independently from the
value of the cross-function eqg the counter must increment
the input. Using the MDG syntax, this property is expressed
as fo llows :

A G ((y = O) ::~ (X (count = inc(count)))

Where X represents the next temporal operator.
In terms of the embedded theory in HOL, the property

corresponds to:

/-defLMDG_AG (COUNTER_TAB counO ^
(LMDG_IMP

(LMDG_CONJ (/~count (t: num). y= false)
(~, count (t: num). count t =abs_val))

(LMDG_X (/~count O. n_count t = inc_abs_val))

5. APPLICATION: HOL-MDG HYBRID TOOL
Having the embedding of the input languages of MDG in
HOL raises the possibility of passing HOL goals out to
MDG. To this end, we developed a hybrid tool, HOL-MDG,
around the embedding. Its verification procedure is
depicted in Figure 3. During the verification procedure, the
user starts by giving the HOL specification, the HOL
property and the goal he wants to prove. If this goal fits the
required pattern, the respective MDG files are generated.
The latter are sent to MDG for the model checking
verification. If the.property holds, a HOL theorem is set.
However, if the verification within MDG tool fails, we have
to develop the proof interactively within HOL.

]? Call Ml)Gand I

+ ~ . .

|

I ~ ; ~ n ~ m I I:~'# '"~;:'~L~fl

F igue3 : H O L - M D G Veri f icat ion Procedure

Obviously, the tool would not accept any arbitrary HOL
specification. It will only accept MDG-styles specifications
and properties. We make use of the embedded HOL theories
to express both the description model, and the properties.

There are different ways to formalise a goal in HOL.
However, when using the proposed tool, the goal should be
an implication according to this form:

/-def Model ~ Property

Since the verification is done in MDG, we need to formalize
the (MDG) result in HOL. Therefore, we convert the MDG
results into a form that can be used [16]:

/-def FormalisedMDGresult =~ Model ~ Property

The general conversion theorem into HOL has been proved
in [16]. So, the theorem can be instantiated for any design
and any property under consideration.

6. CONCLUSION
We have described in this paper an embedding of the MDG
input languages in HOL: the MDG-HDL grammar and the
l-Moc temporal logic. The embedding of the former is
achieved by covering the syntax of the many-sorted first-
order logic. It allowed us to extend the tool in [9] with
abstract types providing a way to write higher-level
specification and pass them to the MDG model checker.
While the embedding of LMDC is achieved by doing a
mapping one to one to all the temporal operators, both LTL
and CTL*, used in the language. This allowed us to define
l-~oc like properties in HOL. As an application of these
embeddings, we plesented a hybrid tool linking HOL and
MDG model checker. The hybrid tool takes as input
specifications and properties written in MDG-HDL and LMDC
languages, respectively based on the developed
embeddings in HOL.

AC KN OWLE DG EM ENTS
We would like to express our gratitude to Dr. Ait-Mohamed
from Concordia University for his precious hints and
discussions during this project.

REFERENCES
[1] I. Beer, S. Ben David, C. Eisner, D. Fisman, A.

Gringauze, and Y. Rodeh. The Temporal Logic Sugar. In
Computer Aided Verification, LNCS 2102, pages 363-
367, Springer Veflag, 2001.

[2] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J.
Herbert, and J. Van Tassel. Experience with Embedding
Hardware Description Languages in HOL. In Theorem
Provers in Circuit Design, pages 129-156, North-
Holland, 1992.

[3] F. Corella, Z. Zhou, X. Song, M. Langevin, and E.
Cerny. Multiway decision graphs for automated
hardware verification. Formal Methods in System

Design, 10(1):7-46,1997.

[4] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas.
A Tutorial: Introduction to PVS. SRI International, April
1995.

[5] P. Curzon, S. Tahar, and O. Ait-Mohamed. Verification
of the MDG Components Library in HOL.
Supplementary Proc. International Conference on
Theorem Proving in Higher-Order Logics, Canberra,
Australia, pages 31-45, September 1998.

[6] L.A. Dennis, G. Collins, M. Norrish, R, Boulton, K.
Slind, G. Robinson, M. Gordon, and T. Melham. The
PROSPER Toolkit. In proceedings of the sixth
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, LNCS 1785,
pages 78-92, Springer Veflag, 2000.

[7] M. Gordon. The Semantic Challenge of Verilog HDL. In
the 10 th Annual IEEE Symposium on Logic in Computer
Science, San Diego, California, pages 26-29, June 1995.

[8] M. Gordon. Using HOL to study Sugar 2.0 Semantics.
NASA Conference Proceedings CP-2(KE-211736, 2002.

[9] I. Kort, S. Tahar, and P. Curzon. Hierarchical
Verification Using an MDG-HOL Hybrid Tool. Correct
Haldware Design and Verification Methods, LNCS
2144, pages 244-258, Springer Verlag 2001.

[10] T. Kropf. Introduction to Formal Hardware Verification.
Springer Veflag, 1999.

[11] T. Kropf and R. Reetz. Simplifying Deep Embedding: A
Formalised Code Generator. In Higher Order Logic
Theorem Proving and its Applications, LNCS 859,
pages 378-390, Springer Verlag, 1995.

[12] K. L. McMilian. Symbolic Model Checking. Kluwer,
1993.

[13]T. Melham and M. Gordon. Introduction to Higher
Order Logic, Theorem Proving Environment for Higher
Order Logic. Cambridge University Press, 1993.

[14] S. Rajan, N. Shankar, and M. Srivas. An Integration of
Model Checking with Automated Proof Checking.
Computer Aided Verification, LNCS 939, pages 84-97,
Springer Veflag, 1995.

[15] K. Schneider and D. Hoffmann. A HOL Conversion for
Translating Linear Time Temporal Logic to 0~automata.
Theorem Proving in Higher Order Logics, LNCS 1690,
pages 255-272, Springer Veflag, 1999.

[16] H. Xiong, P. Curzon, and S. Tahar. Importing MDG
Verification Results into HOL Theorem Proving in
Higher Order Logics, LNCS 1690, pages 293-310,
Springer Ve flag, 1999.

[17] Y. Xu. Model Checking for a First-Order Temporal
Logic Using Multiway Decision Graphs. PhD Thesis,
University of Montreal, Montreal, Quebec, Canada,
April 1999.

[18] Z. Zhou and N. Boulerice. MDG Tools (V1.0) User's
Manual. University of Montreal, Dept. D'IRO, 1996.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer: 0-7803-7983-7/03/$17.00 ©2003 IEEE

