4. On the Move (Variables, Assignment and Declarations)

“But it does move”

Galileo (1632).

Assignment and Variables

Storage space is very important in programming. Programs process information and
that information needs to be stored somewhere. Processing it involves moving it from
place to place. Without the ability to move data around, computers would not be of
much use. We will examine here the basic features of instructions for moving things
around.

Consider the game of chess. Chess players normally record their moves as they make
them so they can play the games through again and analyse them. Such written version
of games between grandmasters often appear in books and newspaper columns. Also
books on how to play often include fragments of games “openings” for example such
as one called “Ruy Lopez” and “Queen’s Gambit”. What is such a written version of a
chess game? It is an algorithm of how to get from the initial position to the final
position, following the rules of the game (ie how the pieces can move). If you were
just told the final position of a game of chess, it would not (usually) tell you much.
The algorithm of how that position arose can be fascinating for chess players. So what
does such a chess game algorithm actually involve? It is a series of moves of pieces
from one position to another — a series of assignments in programming terms. An
assignment is just an instruction to move data from one place to another. Each square
of the chessboard is a storage space that can hold a single piece at any time. The
pieces are playing the same role as data values in a program — the things that are
stored. The squares are variables. A variable in a computer program is just a place
where things (data) can be stored.

Each square on the chessboard is given a name. In computer parlance a variable name
is referred to as an identifier. The most common way in chess is to name each with a
letter giving the column it is in and a number giving the row it is in. Thus b/ is the
name used to refer to the square that the white Knight starts in, in row 2 column 1. All
identifiers in chess are thus a letter from a to h followed by a number from 1 to 8.
Programming languages similarly have rules for what makes a valid identifiers so you
can tell when something is and is not an identifier. For example, the rule might be that
an identifier is a sequence of digits and letters of the alphabet but cannot start with a
digit.

If we wish to specify a move of the game in chess we must specify two things — the
piece to be moved and the place it is to be moved to. There are many ways used to do
this and different chess books use different ways. The most common involves making
moves like R — e4 to mean move the Rook (that is perhaps at el) to square e4.
However this does not always work — there are two Rooks of each colour and in some
board positions either could move to square e4. For example perhaps the other Rook
was at square e5. It could also be the one we meant. We need a system that uniquely
tells us which piece we want to move. An easy way to do this is not to give the name
of the piece (which is not unique) but to give the name of the square. This is unique

since we have given a different name to each square and only one piece is on a square
at any time). Thus the easiest way to specify a chess move is just to give the start
square and the destination square. Thus in the above situation we would say el-e4.
Had we meant to move the other Rook we would have written e5-e4. Notice that we
are using a special symbol “-“to mean move. Notice also that we do not mean move
e5 itself (the square). We mean move the piece that is currently in that square. At
different times in a game”e5” could refer to completely different pieces — at one point
a pawn, later a Bishop, then another pawn. “e5” is an identifier of the variable. A
whole game would be specified by giving a whole series of such moves. In essence we
have created a language for writing chess algorithms in. The language used in chess
books is usually a little more complicated — it includes instructions that mean “The
player Resigns”, use a “x” to mean move to a square and capture the piece that is there
and also have a way of indicating whether white or black. Why has a special language
been created? Why do the books not just use English? It is essentially for the reasons
we discussed for computer languages — we need to remove ambiguity as just
discussed. Such a language is also very concise -—and once learnt is very easy to
understand (though looks like meaningless lists of numbers and letters to someone
who does not play chess).

A program is an algorithm for moving data (usually numbers) around in a computer
rather than pieces around a chessboard. However the same principles apply. How do
we specify moving something from one place to another? We need to specify what is
to move and where it is to move to. Identifiers (i.e. the names of storage spaces) are
used to refer to the thing being moved and also the place it is to move to. We need
some symbol to indicate that we are talking about moving something from one place
to another (like the “-* we used in the chess algorithms). Otherwise we would not
know whether the instruction was to move the data or (for example) do a calculation
on it. Different languages use different symbols (like “=" or “:=) to mean “‘assign”.
For example, to write an instruction to move a chess piece using programming

language notation you might write something like.

ed =el
or

ed=cl
rather than

el-e4

to mean square e4 gets the piece currently at el.

This use of different notations to mean the same thing in different languages is just
like in human languages where different languages have different words for the same
thing — French for example uses the symbols “bouger” to mean what in English is
referred to using the symbol “move”. Once you understand the concept however
switching between languages is much easier.

Consider another example from the world of games. When I was at school we had a
craze for playing the game of Diplomacy. It is a war game set on a board of Europe.
Unlike other war games the fun is not just in moving pieces about but in, negotiation
making secret deals with other players and double crossing (like real Diplomacy).
Here we are interested in the actual moves. The board is divided into named areas
corresponding to places like London or Bulgaria and seas like the North Sea or the
Black Sea. On each round of the game, players move their pieces from one location to

an adjacent location. As with chess, each place can only hold one piece so there are
rules about how you decide who wins when two pieces are supposed to be in the same
square. The moves are intended to happen simultaneously, but obviously, in reality
they are done one at a time with a period at the end of each turn for deciding the
conflicts. To ensure no one has a chance to change their moves on seeing someone
else move, each player writes their orders down. For example, the person playing
England might write:

Lon-North S

Den-Kie

As with chess these are a series of assignments. Now the variables are the named
areas. Their names like “London” shortened to “Lon” are identifiers. Again “-“ means
“move”. The problem is similar to that for chess and the solution is basically the
same. The movements are specified by giving the locations moved to and from.

There is one difference in the way assignment is usually written in programming
languages that often confuses beginners. Many programming languages give the two
locations apparently the wrong way round. el-e4 in our chess language above was
used to mean “Move the piece from el to square e4”. In programming languages it is
often the other way round: i.e. if you meant “Move the piece from el to square e4”
you would write e4-el. This looks bizarre but it makes sense if you read it as: “Square
e4 gets the piece from square 1.

One way to think of variables is just that they are storage boxes, each big enough to
hold just one thing. Assignment is just an instruction to move something from one
box to another. However, as each box can only hold one thing, if something else is
already there, that thing is first thrown away unretrievably to make room for the new.
Assignment in programming languages is a little bit more subtle than that though and
this is a way it differs from moves in chess or Diplomacy. The thing being moved is
actually copied first and it is the copy that is put in the new box. What this means is
that not only is the thing copied placed in the new box, but an identical thing is also
left in the original. This is as though the rules of chess were such that if you moved a
pawn forward a square, the new position would have a pawn both in the original and
new positions.

The memory buttons on calculators are providing an assignment operation of this
copy form. They are used to store temporary results in the middle of calculations. This
is exactly what a variable in a computer program is for: storing something for later
manipulation. The memory is thus a variable: its identifier on most calculators is M.
However, when you use the memory button to move a value from the memory to the
display, the value stays in the memory too, so can be used again. Some calculators
have multiple memories: ie several variables with names like M1, M2 and so on.
When you press the memory button you do an assignment to the memory. You are
basically saying put the number currently on the display into the memory. Again you
are specifying (at least implicitly) the place to get the value from and the place to
move it to. As the display is the only place that is allowed as the source of the
assignment on calculators you do not have to explicitly specify it. If there are multiple
memories you will need to indicate which is to be used — usually by pressing a
different memory button.

Many phones have a way of storing commonly used numbers so that they can be
dialled quickly with only one or two button presses. For example I often phone my
parents and my wife’s work. It is useful to have those numbers stored and so be able
to phone them quickly. Each of the quick dial locations is a variable in computer
science terms — it is a place where numbers can be stored until they are needed. The
label on the button is its identifier. The identifiers might just be numbers or
sometimes they are special buttons with identifiers like M3. How do I store a number
in a quick dial button? The instruction book gives me an algorithm.

1. Press the quick dial button (Q)

2. Press the numbered button where the phone number will be stored

3. Dial in the telephone number to be stored.

4. Press the “enter” (E) button.

This is giving an algorithm for typing in an assignment command. Suppose I wanted
to store in quick dial button 3 the number 020-1234567. Following the algorithm I
would press the following keys:
Q30201234567 E
This is just another notation for assignment! Another way of writing this might be:
3 «—0201234567.
That is the same instruction — just written in a different language — perhaps for a
phone with a key marked «— to mean store in a memory key and a key “.” to mean
“enter”. The first Q can be thought of as being a symbol to mean we are doing an
assignment. The letter is the place to assign to and the following digits are the value
being assigned to that key (i.e. being stored there). The final E can be thought of as
punctuation —like a full stop in a sentence. It indicates that we have finished the
command. Computer languages have similar punctuation characters. In some
languages a full stop is used to mean the end of the current command, in others a
semi-colon is used.

Swapping the positions of two things is a common operation that when broken down
into its basic steps is a sequence of assignments. We will use it later when we look at

sorting things. Try the following simple puzzle (using coins) that requires you to
devise a swap algorithm. (One answer is at the end of the chapter).

O o

A

oc)

T

A board consists of three squares named A, B and T, and two pieces, one black and
one white. The black piece is placed on square A, and the white piece is placed on
square B. Pieces can be moved from any square to any other. However, if a piece is
moved to a square where the other piece sits, then that piece is removed permanently

from the board. Work out a sequence of moves (and write them out in English) that
lead to the positions of the two pieces being swapped. Now write down your sequence
of moves using the notation x «<— y to mean “square x gets the piece currently on
square).
Here is one way to do it.

1. Move the piece at square A to square T

2. Move the piece at square B to square A

3. Move the piece at square T to square B
Notice that this takes three moves. You cannot do it in two as you would remove a
piece if you for example tried to move the piece on square A straight to square B. We
will look at why that goes wrong later but check it for yourself now. Writing the
above moves out in our invented notation.

1. T« A
2. A—B
3. BT

Remember to check you wrote the assignments the right way round to mean for
example “square T gets the piece on square A”

Rotating the positions of things needs a similar algorithm to swapping. Try the
following similar puzzle.

O @ @

T

A board consists of four squares naincu A, B, C and T, and three pieces, one black,
one grey and one white. The black piece is placed on square A, the grey piece on
square B and the white piece is placed on square C. Pieces can be moved from any
square to any other. However, if a piece is moved to a square where the other piece
sits, then that piece is removed permanently from the board. Work out a sequence of
moves (in English) that lead to the positions of the three pieces being rotated one
square to the right (so that the black piece is on square A, the white piece is on square
B and the grey piece is on square C. Now write down your sequence of moves using
the notation x «<— y to mean “square x gets the piece currently on square y”’ as before.

Here is one algorithm to do this rotation in English
1. Move the piece at square A to square T
2. Move the piece at square B to square A
3. Move the piece at square C to square B
4. Move the piece at square T to square C

and in the special notation:

1. T<A
2. A<B
3. B«C
4. C«T

In most of the above we have talked of moving things from one place to another. That
is not quite what computers do. Rather than move things they just copy them. When
you move something it is no longer in the place where it was — so the above swap
puzzle, moving a piece means there is no longer a piece in the place it came from.
Computer assignment leaves a copy of the original in the original place. Variables can
never be “empty”, the may contain 0 (but that is still a thing) or you may not know
what is in them (but something will still be there!). To see how a computer actually
swaps things lets look at a variation on the swap puzzle. There are now three squares
with identifiers a, b and t as before. In this puzzle they start with a piece in each, one
black, one white and one grey.

® @

A B T

The aim is again to swap the pieces in A and B, so that now A is white and B is black.
Now you cannot just move pieces. Instead you can just copy them. You have a supply
of other black, white and grey pieces. Each “move” now involves doing the following:
pick a square, note the piece in that square, get another piece of the same colour and
finally place that new piece in some new square discarding whatever was already
there. So for example, now the instruction T «— A would mean look at what is in
square A (its black at the moment), get another black piece and put it square T
throwing away the grey piece that is there. The new board position is:

o e

A B T

Write down a sequence of moves that would lead to A being white and B black — so
they are swapped over (we do not care what T ends up with). In particular the
following algorithm does not work, why not (try it and see).

1. A« B (A gets acopy of B)

2. B« A (BgetsacopyofA)

Each “move” in this puzzle is just like an assignment in a simple programming
language, the squares are storage spaces — variables and the assignment copies
whatever is in one variable (square) to some other square.

Why did the above 2 step algorithm work? It is because the first step makes a copy of
B and puts it in A:

~

0@

T

>

There are now no black spaces on the board. When you do the second step you are
now making a copy of A and putting it in B, but A is white so you just throw away the
old white piece and put in a different but identical looking white piece. The board
looks exactly the same after the second step:

O0l@

A B T

As there are no black pieces after the first move there are no blacks to make a copy of,
so there can not do any move that will get a black after.

What is the correct algorithm? It is exactly the same one as for the original puzzle. We
must make a copy of one of the pieces in T first so that we do not lose it when we
copy something different into its position.

1. T« A (T gets acopy of A)

2. A < B (A gets a copy of B)

3. B« T (B getsacopyofT)

Let us return to our design of the Imp computer — a computer that works using Imps to
do the computation. Storage space in our Imp computer consists of boxes. There are
two kinds of Imps: memory Imps and instruction Imps. The instruction Imps are the
middle managers giving orders. The memory Imps are the workers — who pass data
around. Each memory Imp owns a box, capable of storing an object or perhaps a piece
of information. The boxes act as the memory of the Imp computer (in our world Imps
themselves are very forgetful so for the computer to be reliable it is important that
their own memories are not relied on). Each Imp that is required to remember
something is referred to by name in instructions concerning that Imp. This is the way
individual Imps are identified: it is their identifier.

The instruction Imps do not have boxes, but instead have pieces of paper containing
the instruction they must follow if ever it is their turn. We will return to how we
determine when it is a particular elves turn later. Here let us look at the individual
instructions. An Assignment elf is one holding an instruction to make a copy of a
piece of data held in the box of one Memory Imp and put a copy of it in some other
memory Imp’s box. An example instruction might be “Joe gets a copy of whatever is
in Fred’s box”. The Assignment elf with this instruction would go to Fred, copy down
onto a new piece of paper whatever was in the box and put it into Joe’s box, hiding
forever what had been in that box. The two elves Joe and Fred here are acting as
variables. Their identifiers are the names “Joe” and “Fred”.

Let us return to the puzzle above of swapping the positions of two counters but look at
it in terms of an Imp computer. Our aim now is to swap the things that two Imps are
looking after (storing in their boxes). Suppose the two Imps concerned are called Alf
and Bridgit. Alf has the number 6 on a piece of paper in his box. Bridgit has the
number 42 in her box. We need Alf to pass his number to Bridgit and Bridgit to pass
her number to Alf. However they can not do it simultaneously — one has to go first but
that would leave one Imp temporarily holding two things. Imps only have one box and
refuse (due to Union rules and their poor memories) to remember more than one thing
at once. We therefore need another Imp to temporarily store one of the pieces of
information. We there for rope in another Imp, Trevor, to help. What is the program to
do this on the Imp computer:

1. Trevor gets Alf’s value.
2. Alf gets Bridgit’s value.
3. Bridgit gets Trevor’s value.

If we agree that an arrow means the Imp named on the right of the arrow passes a copy
of their value to the Imp on the left who puts the number in the box, discarding
whatever was there before then we can use the following shorthand.

1. Trevor < Alf
2. Alf « Bridgit
3. Bridgit < Trevor

This is the same algorithm as we saw earlier (just with different identifiers for the
variables). Notice that in each of these instructions, the two Imps named have to do
something different.
In the instruction:

Trevor < Alf
Alf must make a copy of his value to pass it on (All Imps come with a supply of rice
paper and a pen to do this). Trevor on the other hand is not being told to do any
writing, just to take the piece of paper given and put it in his box, throwing away
whatever was there. (Imps actually eat the paper rather than throw it away as Imps
always use rice paper to write on — once eaten the value can never be recovered).

If on the other hand the instruction had been
Alf « Trevor
then Trevor would be doing the writing and Alf would eat his old value.

Initialisation

The point of variables is to store things that can then be moved around or manipulated
as we discussed. Before you start doing this you have to initialise the variables. By
this we just mean to set starting values. In chess, we initialise the squares with pawns
on the second row, and Rook, Knight, Bishop etc on consecutive pieces of the first
row. You cannot start a new game until you have initialised the board. At any one
time there are always some squares that are blank. Those squares have not been
initialised with a value. Obviously you cannot give a move that moves a piece from an
empty square so you cannot in the first move refer to any of those squares as the

source of the move. A first move of e3-e4 is nonsensical as there is nothing in square
e3 to move at the start. You could of course move a piece into e3 first and then move
it out again on a later move.

It is possible to buy chess puzzle books. They give chess positions that are 2 moves
away from checkmate. The puzzle is to work out what the moves are for that position.
Each puzzle uses a different initialisation of the board. Somehow the book has to tell
you which pieces too put where. This is usually done with a picture of the board, but
this is giving the same two bits of information a square (a variable) and a piece (value)
to go in that square at the start.

A chessboard can be used to play draughts. It is just initialised in a different way (even
though the board itself is identical). Different pieces are placed on different squares to
start the game.

My phone has a feature that allows me to store in special “quick dial” buttons
numbers I use frequently like those of my parents. The idea is that you can phone
common numbers with the press of just two buttons. What would have happened if I
pressed one of these buttons when I first bought the phone before I had stored any
numbers? There are several possibilities. One is that the buttons could do nothing,
another is that they dial a random number, another is that an error message might be
spoken in the handset. None of these options would result in a sensible number being
dialled — pressing the button before they have been set is not useful. It most probably
would be a mistake on my part. Before I use those buttons I must initialise them by
doing an “assignment” as we saw earlier.

The Diplomacy board also has to be initialised. The instruction book does it saying
what piece goes where. For example England is initialised with:
F London
F Edinburgh
A Liverpool
1.e., Fleets are placed at London and Edinburgh and an Army at Liverpool — my
apologies to the Scots (and Welsh) about the above — the Diplomacy Board really does
have Scotland (and Wales) as regions of “England”. These instructions are again just
assignments, but this time rather than moving a value from one place to another we
are moving a value not currently at another location to a location on the board. We use
a notation that allows us to specify the place moved from and the value (i.e., piece) to
be moved there. A similar facility is provided in programming languages —though the
notation used is normally the same as for assignment. You thus might write something
like

London =F
rather than F London to mean “London gets a Fleet”.

The above example is different to earlier examples in that rather than just moving
existing things from one storage location to another, we are putting a new piece or
value into a storage space. We thus have a notation not only for referring to the
storage locations (the variables) but we also need a notation for referring to values. In
Diplomacy there are only two kinds of piece — Fleets and Armies so we use F to mean
a value of the former and A to mean a value of the latter in our notation. Suppose we
wished to give an algorithm for initialising a chessboard. Normally, this would be

done using a picture. To give it as a series of instructions (an algorithm) we need a
distinct (i.e. unambiguous) way of referring to each piece. What are the values of a
chessboard? — Pawns, Rooks, Knights, Bishops, Kings and Queens. The normal
convention used by chess players is for the pieces to be named by a single letter — P,
R, N, B, K, Q. However that on its own is not enough. We also need to indicate
whether the piece is black or white otherwise our notation would be ambiguous. We
might therefore add an extra letter (W or B) to each to indicate the colour. The
algorithm might be then written something like:

al = WR
a2 = WB
etc

We have thus given ourselves a notation for referring to the chess pieces, the values.
This raises an important issue with respect to readability. The above notation is only
readable once you have used it enough to be familiar with the code. It would be much
more readable if we had actually used longer identifiers.

al = White Rook

a2 = White_Bishop

etc
That way anyone who was familiar with chess pieces would immediately understand
the notation. It is similarly important with programs that names chosen both for values
and variables are easily understandable without explanation. This is known as good
style. A program is not wrong if it uses obscure names for things in the sense that it
will (possibly) do the correct thing. However it is bad if it is hard for other people to
understand.

When we think in terms of chessboards, moving a piece from an empty square seems
a silly idea. However, a common fault in programs is to do precisely that — forget to
initialise a variable and then give an instruction to move a value from it when one
does not exist. Different programming languages vary on what happens when you try
this but in all cases it would mean the program was not as intended.

When you switch on a calculator, it automatically initialises the display to 0. Some
programming languages automatically initialise variables to zero. More commonly
they start with some random and unpredictable value unless the program explicitly
contains an instruction to put something else there.

In terms of our Imp computer, initialisation is just a question of ensuring all the
memory Imps being used have been given something to store in their box at the point
when they are told they are needed for a particular program run. If they are not then
their box will have whatever number happened to be there from the last time the box
was used (which could be anything). If this Imps value was used before anything new
was put in the box, then the Imp computer would have an unpredictable result as it
would depend on the old value being used.

Expressions

So far we have seen assignments where a literal value is moved to a storage location.
We have also seen how rather than referring to a value we can refer to a storage
location to indicate which thing we wish to move. A third thing that we can do is to
move the value of a calculation to a variable. Instructions to do calculations are
referred to as expressions. Often the calculations we wish computers to perform are

on numbers — arithmetical calculations. For example, suppose I am told the time of
my train is at 17 hundred hours. The first thing I do is mentally convert it to a 12 hour
clock as that is what I am most familiar with. What I do is a calculation — I subtract 12
from the 24-hour time given. How might I write an instruction to do such a calculation
for someone else to follow — I just use the notation from school

(17-12)
giving the answer 5 if followed. At school we learnt notation for writing more
complicated calculations such as how to work out the average of several numbers.

How would our Imp computer deal with expressions? We would require an Imp who
was expert in each of the arithmetical operations — an addition Imp, a subtraction Imp
and so on. Whenever a calculation (say addition) needed to be done the memory Imps
holding the values concerned would pass their values to the appropriate Imp who
would do the calculation and pass the result to wherever the result was to be stored.
For example Arthur might be the addition Imp, doing any addition needed, Sol might
be the subtraction Imp.

For example, suppose the instruction to be followed was

Joe gets the answer of Arthur adding Bridget and Alf’s numbers.
perhaps written in our short hand notation as:

Joe « Bridget + Alf
Arthur here is the addition Imp referred to using the symbol +. This means get a copy
of the value held by Bridget in her box and a copy of the value held by Alf, pass them
to Arthur who will add them (the only thing he is useful for) and pass his answer on to
Joe to store in his box.

The Imps would be able to cope with more complicated calculations by working
together. For example if the instruction were:

Joe « (Bridget + Alf) - Conor
This would mean that first Arthur would be passed the values from Bridget and Alf as
before. However, rather than passing the result to Joe he would pass it to Sol (the
subtraction expert) who would also get the other value from Conor (an Irish Imp) and
do the subtraction, before passing the final result to Joe.

If we needed our Imp computer to keep a count (perhaps of the number of times a dice
had been rolled), then we would need an instruction to add 1 to the count. Suppose
Zack was charged with keeping count then he would do this by keeping the current
count in his box. Every time the dice was rolled, Zack would need to look in his box,
note the number, add one to it and store the new answer back in his box. However,
adding one is an addition calculation and Arthur is the only one who can do that (there
are poor levels of numeracy amongst Imps generally though Union rules also mean
only registered addition Imps can do addition). The instruction we write to tell Zack
how to get the addition done is thus:

Zack « Zack + 1
What does this tell Zack to do? He must pass a copy of the value in his box to Arthur.
Arthur will add 1 to it and pass the result back to Zack, who will then put it back in
his box. The result: Zack has added 1 to his count without knowing how to add 1
himself!

Remember at the start we talked about how in the Second World War, the British
broke the German Enigma codes? This allowed them to read all their encrypted
communications. This was done by having teams of people working in separate Huts.
Each did a specialist part of the calculation and passed on the results to someone else
in another Hut who could do the next part. The result was that together they cracked
the codes, without understanding anything other than their own part. Only a few
Mathematicians such as Alan Turing understood the whole process. In essence those
people were just acting like an Imp computer with Turing their programmer.

Boolean Expressions
A calculator is used specifically to do calculations on numbers. The answers it
produces are also numbers. The expressions use operators such as + and -. However
expressions do not have to only be about numbers. We also frequently use expressions
that give boolean answers. A boolean is just one of the values true or false. Quizes
and tests often use “true or false” questions. Here are some examples that might be
used on a Radio quiz:

True or False:

1. Freddy Mercury is alive.
2. Britney Spears is alive.
3. David Beckham is dead.
4. Elvis Presley is dead.

5. Clint Eastwood is alive.
At the time of writing the answers to these questions are
1. False 2. True 3. False 4. True 5. True.

Here is another set that might appear on a school test.

True or False:
Glasgow is the capital of Scotland.
Sidney is the capital of Australia.
Diamonds are made of crushed Carbon.
Sheftield is in South Yorkshire.

5. Rubber comes from a plant.
The answers to these questions are:

1. False 2. False 3. True 4. True 5. True.
The answers are not numbers as for questions calculators are used to answer but either
true or false. They are thus questions with boolean answers. As we will see later
booleans are very important in computer programming, as they allow computers to
make decisions. Notice that to get a question with a true or false answer it has to be
phrased in a particular way. You cannot ask “Is Freddy Mercury Dead or Alive?” The
answer to that question is either “Dead” or “Alive” not “true” or “false”.
Programming languages similarly require questions to be phrased in a particular way
to ensure the answers are either true or false.

hall A e

Expressions are made up by applying operators to values: 6+2 for example applies the
arithmetic operator + to the numbers 6 and 2. We can and do build boolean
expressions in a similar way. The operators in boolean expressions are things like and
and or. We can use these words to convert true/false questions into more complicated
true/false questions. For example the following question uses the logical connective
and:

True or False:

Clint Eastwood was in the film The Good, the Bad and the Ugly and

Harrison Ford was in the film Mad Max.
This is made up of two separate questions: one about Clint Eastwood and the other
about Harrison Ford. Depending on the answer to the parts you may need to know the
answer to both to be able to answer the question. Only if both separate parts are true
can the whole statement be true. If either were false the whole thing would be false. In
fact it is false because it is not true that Harrison Ford was in Mad Max.

A similar question using the connective or is a different question all together:
True or False:
Clint Eastwood was in the film The Good, the Bad and the Ugly or
Harrison Ford was in the film Mad Max.

This is true because Clint Eastwood is in The Good, The Bad and the Ugly even

though Harrison Ford was not in Mad Max.

Buses sometimes have signs using boolean connectives. They give tests that must be
applied by the driver to determine if the bus is full. For example, the sign may say:

35 sitting and 10 standing
What this means is the driver must ask the question of his or herself before letting a
passenger on if the bus appears to be close to full: Are there already 35 people sitting
and 10 people standing. If the answer is yes (so the original statement is true) then the
driver must not allow anyone on the bus. Notice that boolean tests are special kinds of
actions that gather information rather than actually doing anything. The bus driver
evaluates the test so that they can make a decision about which action to take next. If
the bus is full then the action they must take is to refuse to allow another passenger
on. If it is not yet full their next action can be to take the fare of the next person. We
will be looking in more detail at how the results of such tests determine our actions in
subsequent chapters.

The film Anna and the King, which is about an English schoolteacher who arrives in
Siam (now Thailand) to be the teacher of the King of Siam’s children. It had been
agreed before she arrived that she would be given a house to live in outside the palace.
However, despite being there for months she is still in the palace. One day she is taken
by surprise when the King finally gives her a house of her own. Taken aback she asks

“Is this because of our agreement or

are you simply trying to get rid of me?”
Wishing to be evasive, the King answers

“Yes”.
This highlights yet another ambiguity in English as well as being an example of
boolean logic. Anna of course was asking which of the two options was the true one,
expecting to be told “Its because of our agreement”. However, the King has quite
legitimately answered as though he was asked a boolean true/false question. If it is
true that he is doing it because of the agreement or it is true that he wants rid of her,
(or both) then the whole statement is true. It is either because of the agreement or
because he is trying to get rid of her.

In a similar way if [am asked “Are you going to do the washing up or not” I can
legitimately (and irritatingly) answer “Yes” — I am going to do one or the other
(probably the latter).

We can build arbitrarily large questions using and, or and some simple basic true/false
questions. For example, the rule of when you have won a game of chess can be
thought of like this. You win if the other person resigns or their King is in check and
all positions the King could move to also leave it in check.
On each move you ask the true/false question:

True or False:

the other person has resigned or

their King is in check and

all positions the King could move to also leave it in check.
Each part of this is a true/false question in its own right.

Returning to the bus example, more modern buses have spaces that can take
wheelchairs. The presence of a wheelchair perhaps takes up two spaces. The sign
about the test for when the bus is full will need to take this into account.

35 sitting and 10 standing or

1 wheelchair and 34 sitting and 9 standing

Menus in restaurants often have boolean like expressions in them to give descriptions
of the meals:

Fish and Chips.
Treat this as a true/false statement:

The meal has fish and the meal has chips.
What they are saying is that this true false statement will be true for the meal you get.
Sometimes they get into trouble due to the ambiguity of language:

Fish and Chips or Baked Potato and Salad.
If you were served just Baked Potato and Salad would you have cause for complaint?
That depends on where the brackets are supposed to be

(Fish and Chips) or (Baked Potato and Salad)
is a different statement to

Fish and (Chips or Baked Potato) and Salad
Since there are no brackets, unless an order of precedence has been agreed the
statement could be interpreted as meaning a meal without fish. I have had arguments
with waitresses over menu entries similar to that. The waitresses concerned have just
assumed I was mad (probably a true statement anyway). Just as the position of
brackets can change the result of an arithmetic calculation, they can also change the
result of a true/false calculation.

The sign on the bus was written with the intention of the brackets being as follows:
(35 sitting and 10 standing) or
(34 sitting and 9 standing and 1 wheelchair)
With the brackets in different places it would
((35 sitting and 10 standing) or (34 sitting and 9 standing))
and 1 wheelchair
then it would suggest that there was room for a wheelchair even if there were 35
people sitting and 10 standing.

Boolean expressions can have variables in them just as arithmetic ones can. If we
think of a variable as something whose value can change with time then “The Queen
of Great Britain” is like a variable. Its value (ie the actual person concerned) is

different at different times. (Coronations are then just assignments putting a new
person to the post!) Similarly “the Prime Minister” can be treated as a variable.

The Queen of Great Britain is Elizabeth and the Prime Minister is Tony Blair
is a true/false statement whose value changes over time. In the year 2000 it is true. In
the year 1980 it was false as then the variable “the Prime Minister” had the value
Margaret Thatcher. The answer to a true/false statement changes if the variables
within it change their value. Similarly in our bus sign stating “35 sitting and 10
standing”, “sitting” and “standing” can be thought of as variables holding numbers
that vary as people get on and off the bus. As a person gets on the bus and sits down
the number of people sitting goes up by one — so in effect that variable does in the
mind of the bus driver if they are keeping track of how full they are.

In programming languages tests have to be written in a rigid form. Remember
programming languages are designed to remove ambiguity and do this by restricting
how you are allowed to say things. In our bus example, we wrote “10 standing”. In a
programming language we would probably be required to write this in a form similar
to:

standing equals 10
using the equality operator. It is true if the two things given with it are equal — here
we are testing whether the number of people standing is equal to the number 10 or
not. Different programming languages would use different words or symbols for
equals for example one (such as the language Pascal) might require you to write

standing = 10
and another language (such as the language Java) requiring you to write

standing = = 10.
In these two cases the meaning is intended to be the same — its just that the different
languages designers have chosen different words to mean “equals”. The full sign
would need to be written something like:

(sitting equals 35 and standing equals 10) or

(sitting equals 34 and standing equals 9 and wheelchair equals 1)

Similarly if we were trying to write in the style of a programming language we might
write for our earlier examples:
Glasgow equals the capital of Scotland

The Queen of England equals Elizabeth and
the Prime Minister equals Tony Blair
where before we were using the word “is” to mean “equals.

Whenever you are writing a test to go for a program you must look for situations
where you are saying two things are equal and convert it to this form of asking
whether it is true that one thing equals another.

Equality is a relational operator. It relates two things. Other relational operators,
familiar from School Maths lessons are “less than”, “greater than”, “less than or equal
to” and “greater than or equal to”. These are normally written by mathematicians as <,
> < >. The bus sign was written in a way so that the test is true when the bus is full.
Alternatively the sign could have been written to be true when the bus still had space.
The bus is legal if:

sitting < 35 and standing < 10

Declarations
Here is a recipe:
Fiorentina Pizza

Ingredients
Yeast
Water
Flour
Tomato Puree
Cheese
Spinach
1 egg

Mix yeast and water, add flour and stir

Knead for 10 minutes.

Leave to rise for 30 minutes.

Roll out the dough.

Place in a large round pizza tin.

Spread with tomato puree, and cheese and spinach.
Crack an egg into the middle.

Bake in oven for 25 minutes.

XN RN =

This recipe for pizza, starts with a list of ingredients. They are not part of the
algorithm as such since they are not instructions of how to do something. The
algorithm consist of the number sequence of instructions. They could be given in any
order. Why do recipes universally start with an ingredients list? It lists the resources
that will be needed for the instructions to be followed. However, all that information
is contained within the instructions themselves. On seeing an instruction, crack the
egg into the bowl, I can see I need an egg. The advantage is that if the ingredients are
listed at the start, you can ensure that you have everything you need to hand before
you start.

Craft books, from how to make wooden toys to how to make necklaces use a similar
list of resources. Here the “ingredients” are the materials:

Materials

Smm plywood (160 x 100mm)

2 20mm round-head woodscrews

PVA glue

paint
In addition, unlike recipe books craft books often include also a list of tools with each
separate set of instructions.

Tools

Drill

Fretsaw

Paintbrush
This is just a different kind of resource being listed. That would be the equivalent of a
recipe book also listing the pots and pans needed (something I would often find useful
as I frequently run out of pans).

The script of a play also has the same structure. A play is just a series of instructions
to actors playing different parts. Before starting you need to allocate parts to actors, so
you need to know what parts this play has. My copy of Shakespeare’s Macbeth has
such a list on the first page before the actual play itself.

Persons Represented
Duncan, King of Scotland.
Malcolm, Son of Duncan.
Donalbain, Son of Duncan.
Macbeth, General of the King’s army.
etc

Programs have something similar to an ingredients list: a list of declarations. They
also list the resources that a program needs. For programs the resources that matter are
places to store data. Having declarations allows the compiler to ensure that enough
storage space is available. Declarations in programs have other purposes as well,
however. One is to give labels or names to the resources so that they can be referred to
later in the program and we will know which resource is being referred to.

Consider another source of algorithms in everyday life: the instructions that come
with construction kits (whether children’s toys or flat-pack do-it-yourself book
shelves). They also normally have a list of parts at the start. However, those parts are
also given a label: often just a letter. The purpose of the letter is so that that part can
be referred to without ambiguity later on in the instructions. For example, the list of
parts might be as follows:

6 x A: 200x1000x20mm

2 x B: 200x2000x20mm

1 x C: 1000x2000x3mm
The instructions then might be:

1. Place part C face up on the floor.

2. Place the 2 parts A side by side against the edges of part C.

3. etc.

Thus declarations give a list of resources needed, but also give names to each resource
that can be referred to within the algorithm itself. These names are referred to as
identifiers: they are used to identify a specific resource. In the shelf construction
algorithm above, three identifiers were used: A, B and C. Using letters for identifiers
removes ambiguity but make algorithms harder to understand. Looking at the shelf
instructions it is not immediately easy to see which pieces of wood are the shelves,
which the back and which the sides. We could easily solve this problem by using
more meaningful identifiers in our instructions (and also of course in the
declarations). For example, the following instructions would be much easier to follow:

Parts

6 x shelf: 200x1000x20mm

2 x side panels: 200x2000x20mm

1 x back panel: 1000x2000x3mm

etc.

Instructions

1. Place the back panel face up on the floor.
2. Place the 2 side panels side by side against the edges of part back panel.
3. etc.

Text books use glossaries and lists of acronyms for a similar purpose to allow a label
to be used to refer to something else. A glossary is just a list of unusual terms used in
the book. It gives a name for each unusual word or phrase in the book, by looking at
the glossary you can find out what is meant by a term. Acronyms are just shortened
versions of long phrases. By putting a list of acronyms at the start of a book, we can
then use the acronym throughout the book in place of the term.

Variable Declarations

The declarations in programs are not quite the same as those in recipes in that they list
a slightly different thing: storage spaces indicating the kind and size. It is as though a
recipe also gave a list of storage jars, pots, pans and dishes needed for a recipe at the
start. This would not be that silly a thing for them to do even though I have never
come across it. On several occasions, part way through a recipe I have run out of pans,
because I, for example, used a large pan for a cheese sauce, only to find [needed it
later to fit the amount of vegetables I had to cook. Mid recipe I have a panic whilst I
transfer things from one pan to another, and wash things — the last thing I need with
guests arriving in 15 minutes. The point of declarations is to allow all the things you
need to be gathered and organised before you start — precisely to avoid that kind of
crisis.

Computers move and manipulate data: patterns of 1s and 0s. All of this data needs to
be stored somewhere whilst it is processed. That is what a variable is used for: a
storage jar for data. Each jar has an associated identifier: a name as we saw above. It
is as though each jar is labelled with a name so that in the instructions of the
algorithm, we can refer to each jar by name and be sure of which one we are referring
to.

In our Imp computer, declarations would be used to gather the storage Imps together
as they were needed. Without declarations, we might get part way through a
calculation and find another Imp was needed. If they had not been booked in advance
using a declaration they would unlikely to be available — most likely they would be
down the Pub and in no state to do anything.

Types
Consider the following list of things.

Red

42
Blue
Bus

a

Car

64

b

c
Bicycle

Now group them into sensible categories. The chances are you grouped them in the
same way as I did:

42, 64

Red, blue

a,b,c

Car, Bicycle, Bus

It is arguably a human instinct to divide the world into categories in this way. It also
turns out to be very useful in programs — letting the computers into the secret of what
our categories are.

Declarations, as we saw, are used to give information at the start of a set of
instructions about the resources that will be needed to complete the instructions. For
programs the resources are places to store data. Often by data we just mean numbers —
a persons age, the salary of a person. However, data can represent more than just
numbers: letters of the alphabet (eg representing a students grade) words or sentences
(like a person’s name) colours (such as the colour to paint Laura Croft’s vest), and
many more. An important piece of information about data is what is known as its
type. The type of something in the computer science sense is just what kind of object
it is: in fact everything of interest about it apart from its actual value. Common
programming examples of types include integers (whole numbers), floating-point
numbers (decimals), characters (letters and symbols), and strings (sequences of
characters like words or sentences).

The children’s game of Categories is based on the fact that we group things together.
In the version for young children, it involves the father writing down a category and
the child having to think of something that belongs in that category not thought of by
another player. Part of the point of the game (at least from the father’s point of view)
is to teach the child what things are grouped together. Think of a bird: “Penguin”.
Think of a city: “Sheffield”. For older children, the game is made harder by requiring
the thing to start with a given letter of the alphabet.

Categorising things allows us to classify the world and draw conclusions about the
properties of objects just from knowing their category. If it is a bird then without
seeing it I can guess it has feathers as that is one of the properties of birds. In real life
the categories blur. If it is a bird then it must be able to fly is not always true for
example — categories are used more as rules of thumb. Computers require preciseness
however, so the categories they use are more hard and fast. “If it is a character then it
definitely does fit into a byte”. Knowing the type (i.e. category) of things in the
program allows the compiler to make appropriate preparations for use of the piece of
data such as how much space it will need. It also allows the compiler to check that
things are used in the program in the way intended. You do not throw a pig out of an
aeroplane and expect it to fly in the real world as ability to fly unaided is not a
property of pigs. Neither do you include instructions in a program to do multiplication
on strings of letters as ability to be multiplied is not a property of strings.

Let us return to food and recipes. We group kinds of food into categories like “pasta”
or “cheese”. There are many different cheeses and many different kinds of pasta. What
use are these labels? One reason why they are useful is that knowing something is
pasta, immediately tells us a whole series of things about it. In particular it tells us
which actions can be performed on it in a recipe and also which operations cannot be

performed. What can we do to (dry) pasta? We can boil it or bake it in the oven within
a Lasagna like dish. What else do recipes do to pasta? My wife looked at me as
though I was mad when I asked her that question! Why? Because it would be weird to
think of doing anything else. If when we were cooking dinner together I passed her the
packet of spaghetti and asked her to “sieve that” she would assume I was losing my
grip. She would not get out a sieve. Why? Because you do not perform the action
“sieve” on things of type “pasta”. Similarly, there are sensible (“grate”) and silly
(“sieve” again) actions to do on cheese. The types of ingredients can thus be used to
check for errors when looking at recipes. If I invented a new type of pasta
“Taggliaroni” — just by telling you it was pasta, you would automatically know many
of the things you could and should not with it. You could immediately substitute it
into a whole range of recipes and get edible results. Similarly, if you know how to
make Blackberry and Apple Crumble, then it is a fair bet that Raspberry and Apple
Crumble would work too as both Blackberries and Raspberries are berries.

Types in programs serve a similar purpose — they allow errors to be spotted. You can
not do arithmetic on colours for example — it is meaningless. You might on the other
hand convert a colour to a number, do arithmetic on that and then convert it back to a
colour in some way. For example you could arbitrarily decide that Blue converts to 1
and Red converts to 2. Blue could be converted to a number, 1 added to that number.
Converting the resulting number back would give you the colour red. Such an
operation that converts things from one type to another is known as a cast operation.

In an Imp computer, different types correspond to Imps holding different sized boxes.
An integer Imp has a box big enough to hold a number. A character Imp has a smaller
box big enough only for a character. Variable declarations ensure that the correct mix
of Imps is obtained and that each Imp has the correct kind of box. If ever an Imp was
given something of the wrong type for their box, they would mangle the result trying
to fit it in.

Enumerated Types
Most computer languages come with some predefined types. By this we mean they
just know about some values and how they are grouped together — which categories
they belong to. These are usually the things that most programs will need to use like
numbers and characters. Many languages also allow the programmer to write
instructions that create new values and put them into new categories. That is the
languages allow instructions for creating new types. What does this involve? If we are
to create a new type we will need to give it a name and we will need to say which
things are in the type. The simplest way of doing this is just listing them. For example
if I was the manager of a consumer electronics shop and had a new trainee assistant, |
would have to give him instructions about his job. Suppose he was very slow and so
did not know much about televisions and videos. The first thing I might do would be
to explain to him about the different things he had to sell — as he would have to
explain the choices to the customers. The first thing I might do is say something like:
“One thing we sell is video recorders. We sell the Technics-501, the ThornE54
and the Sony-P45”. “We also sell televisions. We sell the Sony-T100 and the
Ferguson170.” etc
What we have introduced to the trainee is two new categories of things: two new type:
televisions and videos. We have then explained what those types are by listing the
things: the values that belong to that type one after another. The values of type
television are the Sony-T100 and the Ferguson170, for example. A type defined in this

way by listing all the things in the type and giving this collection a name is known as
an enumerated type. Once the type has been defined, then instructions can be given
that use the type (in the above case instructions of how to get a customer to exchange
money for one of the items of that type!) Notice however that the type definition is not
strictly part of the algorithm itself. It is not an instruction of how to do something. It is
rather a declaration of information needed to understand the algorithm. Type
declarations are thus similar to variable declarations in this way.

