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ABSTRACT

Intensity-based methods work well for multi-modal image
registration owing to their effectiveness and simplicity, but
the computation for geometric transforms is a heavy load.
To accelerate the transformation, in this paper, we present
two shear-resize matrix factorizations for general 3D
linear transformation, to factorize a transform matrix into
three shears and a fixed resize, or four shears and a
customizable resize. Shears can be implemented very fast
by memory shift, and a resize can be done by axis-aligned
resampling. The factorizations can be applied to both
rigid-body and affine transformations. The experiments on
MRI and CT volumes show that our method is 10 times
faster than the naive transformation. The method is quite
promising for hardware and parallel implementation, and
is also valid for mono-modal image registration.

1. INTRODUCTION

Entropy-based registration method was first proposed by
Viola [1] and Collignon [2] independently. The idea leads
to much research and it’s very popular with multi-modal
medical image registration in recent years. It maximizes
the mutual information between the two given images, and
needs no complicated feature extraction.

For multi-modal volume registration, sometimes the
minutiae are not easy to detect and not necessarily the
same even if two volumes are well aligned. But according
to information theory, the better the two volumes aligned,
the better one volume can be explained by the other [3].
So the entropy-based method works well without
concerning much about the minutiae.

Virtually, joint entropy and mutual information are
two measures of correlation between volumes. Intensity-
based methods repeatedly apply geometric transformations
to  the  floating volume  so as to  find  the best  registration
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parameters to correlate with the reference volume. All the
voxels in the floating volume must be relocated after the
transformation. Therefore, geometric transformations are a
heavy load for registration, and a fast transformation
largely accelerates the correlation-based optimization
algorithms for image registration.

Shears can be implemented faster by hardware-level
memory shift than by voxel-by-voxel relocation. A resize
can be done by simple axis-aligned resampling. So if a
transform can be factorized into a series of shears and
resizes, the transformation must be faster. By using some
hardware or parallelism, the transform can be much faster.

Research on shear factorizations dates back to early
1980s, and a number of such algorithms have been
published in the literature, such as Catmull and Smith’s
two-pass pseudo-shear (shearing coupled with scaling)
factorization for 2D rotations [4], Paeth’s three-shear
factorization for 2D rotations [5], Hanrahan’s three-pass
pseudo-shear factorization for 3D affine transforms [6],
Wittenbrink and Somani’s three-shear factorization for 3D
rotations [7], Chen and Kaufman’s four-shear factorization
for 3D rotations [8].

For volume registration, Thevenaz and Unser
presented a four-pseudo-shear factorization for 3x3
matrices to interpolate volume data fast in three separate
dimensions [9]. Cox and Jesmanowicz proposed a real-
time 3D image registration for functional MRI by using
3D shear factorization of matrices [10]. The factorization
has four pure shears, but only for orthogonal matrices.

In this paper, we propose two shear-resize
factorizations to accelerate volume registration, which can
be applied to both rigid-body and affine transforms. Some
experiments on multi-modal medical volumes show their
efficiency, and they can be run much faster if implemented
with hardware.

2. ELEMENTARY TRANSFORMS

We have 3 cases of 2D slice shears: yz/x (shearing yz
slices by using x coordinate), xz/y and xy/z, and 3 cases of
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1D beam shears: x/yz (shearing x beams by using y and z
coordinates), y/xz and z/xy. They are denoted in this paper
as ( , , )S x a bS , ( , , )S y a bS , ( , , )S z a bS  (for slice shears) and

( , , )B x a bS , ( , , )B y a bS , ( , , )B z a bS  (for beam shears),

respectively. The matrices of the shears are respectively:
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Generally, slice shears are faster than beam shears
because the data are better connected during each slice
translation. If the volume data is in a 3D memory, all slice
shears can be implemented the same fast by using memory
shift. However, in our experiments on PC, physically only
1D memory architecture is provided. For 3D volume, our
data is stored in row-major ordering, first by row (x), then
by column (y) and last by layer (z), so the shears are not
the same fast.

In order to capitalize on the neighboring connections
in the 1D memory, the intrinsic functions of “memory-
move” and “memory-copy” can be used to translate whole
or partial xy-slices and x-dimensional row beams. For
example, xz/y shear and xy/z shear can be implemented by
memory shift while yz/x shear can only be done by voxel-
by-voxel moving, which is time-consuming.

Table 1 shows the average running time for some
elementary transforms and for naive rotation and naive
general linear transformation on a PC (See Section 6).

Table 1. Average time for 3D transforms (ms)
volume size

transforms 643 1283 2563 5123

x 0.26 5.73 46.97 361.55
y 0.10 3.94 36.52 293.40
z 0.09 4.13 50.88 445.38

translations

3D 0.22 5.61 58.19 462.84
xy/z 0.10 4.04 35.17 287.66
xz/y 0.19 7.20 51.82 366.14slice

shears
yz/x 1.98 183.28 1866.25 19261.0
x/yz 0.48 5.75 37.10 297.76
y/xz 1.37 14.46 115.89 2117.59beam

shears
z/xy 4.83 203.84 5422.13 34434.7

x 10.85 87.73 683.58 5435.71
y 0.39 6.78 47.67 380.84
z 0.12 6.39 44.96 363.26resizes

3D 11.37 91.33 709.62 5608.07
xy 0.31 5.95 41.71 490.67transposes
yz 0.38 5.66 48.21 1097.42

rotation 50.27 403.18 3570.23 29338.0naive
transforms linear 56.08 471.58 4252.21 34347.3

According to Table 1, another factor that affects the
transformation speed is the usage of the CPU cache. For
example, the slowest yz/x shear, the slowest z/xy shear and
the slowest x resize can only be implemented by voxel-by-
voxel moving and the CPU cache is not efficiently used.

To accelerate a transform, the problem is how to find
a factorization with those fast elementary transforms.

3. SHEAR-RESIZE FACTORIZATIONS

As known in linear algebra, LU factorization A=PLU
exists if and only if A is non-singular, where P is a
permutation matrix, L is a unit lower triangular, and U is
an upper triangular matrix. It is easy to prove that a so-
called pseudo-permutation matrix (a unit upper triangular
matrix whose elements are all 0, 1 or –1, still denoted as
P) can play the role of the permutation matrix to convert
all leading principle minors into non-zeros, and the
nonsingular triangular matrix U can be further factorized
into a unit triangular matrix (denoted as U as well) and a
diagonal matrix D, and D can be flexibly moved to in front
of, in between, or behind those unit triangular matrices.

In paper [11], it is proved that the factorization
A=PLUS exists if and only if A is non-singular, where P is
a pseudo-permutation matrix, L is a unit lower triangular,
U is an upper triangular matrix whose diagonal elements
can all be customized as long as the determinant is the
same as det(A), and S is a special unit lower triangular
matrix, such as a matrix with the first column or the last
row off-diagonal elements being non-zeros. The
customizable diagonal elements of U can be further
extracted to form a diagonal matrix D and such a resize
matrix’s position can also be flexible. Thus, we can find a
factorization of A=DPLUS, where the axis-aligned scaling
factors of the resize are almost freely customizable.

Based on the above analysis, we can find a shear-
resize factorization of A=DPLU, where the resize is fixed
by the transform matrix and P, and a shear-resize
factorization of A=DPLUS, where the resize is
customizable. A customizable resize can be a uniform
resize, a non-uniform resize, or a resize only in one
dimension. To employ what factorization in a specific
system depends on what resize is the fastest in the system.

For a non-singular 3D linear transform matrix, if all
the leading principle minors are not zero, we have the
factorization of L, U and a fixed resize D as:
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If some off-diagonal minors are not zero, we can also

find a factorization of a unit lower triangular L, a unit
upper triangular U, a slice shear 

SS  or a beam shear 
BS ,

and a customizable resize D (without permutation matrix):
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1 2( , , )S x s s=A DLUS
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A matrix made of two unit triangular matrices LU can

be further factorized into 3 slice shears or 3 beam shears:
),,(),,(),,( 212121 cczbbyaax SSS SSSLU ⋅⋅=

where 
1 1 2 2 1 1 2 3 1 2 1 3 2 3,   ,   ,   ,   ,   a l a l b u b l c u u u c u= = = = = − = .

),,(),,(),,( 212121 ccxbbyaaz BBB SSSLU ⋅⋅=
where 

1 1 2 2 1 1 2 3 1 2 1 3 2 3,   ,   ,   ,   ,   c u c u b l b u a l l l a l= = = = = − =
It should be mentioned that symmetrically-permuted

resizes are also resizes, symmetrically-permuted shears are
shears as well. For instance, ),,(),,( baybax S

T
xySxy SPSP = .

Now that some transposes are faster than some shears
and resizes (see Table 1), we can also use two transposes
and a faster shear or a faster resize to accelerate another
time-consuming shear or resize. For example, let ( )x αD ,

( )y αD and ( )z αD  be the resizes in x, y and z directions

and 
xyP  be the xy transpose, we have:
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After an xy transpose, we avoid the inefficient yz/x

shear and the slow x-resize or 3D resize.

4. OPTIMIZATION FOR REGISTRATION

Based on Shannon’s information theory, the mutual
information I for two images A and B is defined as

),()()(),( BAHBHAHBAI −+=
where H(A) and H(B) are the entropy of image A and
image B, respectively, and H(A, B) is the joint entropy of
the two images.

An alternative normalized version of mutual
information was proposed by Studholme et al [12], which
is more robust when overlap area changes substantially. It
is defined as ( ) ),()()(),( BAHBHAHBAY += .

The larger I(A, B) or Y(A, B) is, the more image A can
be predicted by image B, and thus the better they are
registered. The latter measure is used in our experiments.

In order to obtain the joint entropy H(A, B), we first
find the joint probability distribution, which is also called
joint histogram in image processing. In intensity-based
volume registration, a voxel in the floating volume is
usually located between voxels in the reference volume
after a geometric transformation. An interpolation method
such as the trilinear partial volume distribution (PV)
interpolation [2] can be used to update the joint histogram.
It uses the interpolation weights to change the 8 positions
(they may be the same) in the joint histogram. For faster
interpolation, the nearest neighbor (NN) method can be
used, which just changes one value in the joint histogram
for each nearest transformed voxel in the floating volume
and the method fits well for shear transformation.

The objective of volume registration is to find the
optimal transform. Our optimization is to maximize the
normalized mutual information. The optimal registration
parameters (geometric transformation) are found by

( )BAY TT
T

,  max  arg* =

A rigid-body transform is a superposition of a rotation
and a translation, so it needs 6 arguments in 3D. In some
applications, rigid-body transformation is not enough. To
take scaling into account, we have 3 more arguments:

( , , , , , , , , )x y z x y z x y zt t t S S Sθ θ θT .

There are many optimization strategies can be applied
to optimal geometric transform searching, among which
downhill simplex method [13] doesn’t require the
derivative of the criterion function. For fast optimization,
we partition the parameter space of affine transforms into
three subspaces, three parameters for translation, three for
rotation and three for resize. For each 3D subspace, we
use downhill simplex method for searching.

5. EXPERIMENTS AND DISCUSSION

We use Visual C++ under the Windows 2000 operating
system to run our experiments. The computer we use is a
PC with an AMD CPU (128K L1 and 512K L2 on-chip
cache, FSB 333MHz) and 512MB memory.

Our experiments are performed on a 256x256x109
MRI data set of a human head and a 256x256x113 CT
data set of a cadaver head (www.siggraph.org/education/
materials/). In order to make the measured experimental
time comparable, we resample the data into cubes of 643,
1283 and 2563. The running time for the linear
transformation is tested by the registration of the two
volume data sets. We take the MRI data as the reference
volume and the CT data as the floating.

In order to keep the data without loss during the
shears, the shears are implemented in a double-sized cube
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(eight times the memory). After the shears, it’s reasonable
to cut it into the original size for fast registration. Thus, we
implement the transpose only in valid data region.
Memory reallocation is needed for some auxiliary work.

The average running time for transforms during
registration are listed in Table 2. The shear-resize
transformation is about 10 times faster than the naive.

Some slices and rendered images are shown in Figure
1. We can see that the two volumes are well registered.

Table 2. Time for 3D image registration (ms/iteration)
Image size

Transform 643 1283 2563

Translation 0.30 6.39 54.07
Resize 1.79 28.15 208.80

3 shears 1.52 27.12 160.20
Memory

Reallocation 1.46 19.13 135.42

Transform
using

Shear-Resize
Factorization

Total 5.06 80.79 558.50
Naive Transformation 63.33 508.31 4163.69

6. CONCLUSION

Some 3D shear-resize factorizations are proposed to make
intensity-based volume registration fast. A 3D linear
transform can be factorized into three shears and a fixed
non-uniform resize, or four shears and a customizable
resize. The factorizations can be applied to both rigid-
body and affine transformations. With some transpose, the
method is 10 times faster than naive transformation. If
shears and resize can all be implemented with hardware,
affine transformation using shear-resize factorizations is
remarkably faster than the naive transformation, and the
hardware architecture is not complicated for pure shears
and axis-aligned resize. Anyway, the quantitative
evaluation and more efficient implementation of our shear-
resize factorizations are needed for our future work.
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