SHEAR-RESIZE FACTORIZATIONS FOR FAST MULTI-MODAL VOLUME
REGISTRATION *

Ying Chen'?

'Dept. of Computer Science

. 1,2
Pengwei Hao™>

2Center for Information Science

Jian Yu®

Dept. of Computer Science

Queen Mary, Univ. of London Peking University Beijing Jiaotong University
London, E1 4NS, UK Beijing, 100871, China Beijing, 100044, China
phao@dcs.qmul.ac.uk phao@cis.pku.edu.cn jianyu@center.njtu.edu.cn

ABSTRACT parameters to correlate with the reference volume. All the

Intensity-based methods work well for multi-modal image
registration owing to their effectiveness and simplicity, but
the computation for geometric transforms is a heavy load.
To accelerate the transformation, in this paper, we present
two shear-resize matrix factorizations for general 3D
linear transformation, to factorize a transform matrix into
three shears and a fixed resize, or four shears and a
customizable resize. Shears can be implemented very fast
by memory shift, and a resize can be done by axis-aligned
resampling. The factorizations can be applied to both
rigid-body and affine transformations. The experiments on
MRI and CT volumes show that our method is 10 times
faster than the naive transformation. The method is quite
promising for hardware and parallel implementation, and
is also valid for mono-modal image registration.

1. INTRODUCTION

Entropy-based registration method was first proposed by
Viola [1] and Collignon [2] independently. The idea leads
to much research and it’s very popular with multi-modal
medical image registration in recent years. It maximizes
the mutual information between the two given images, and
needs no complicated feature extraction.

For multi-modal volume registration, sometimes the
minutiae are not easy to detect and not necessarily the
same even if two volumes are well aligned. But according
to information theory, the better the two volumes aligned,
the better one volume can be explained by the other [3].
So the entropy-based method works well without
concerning much about the minutiae.

Virtually, joint entropy and mutual information are
two measures of correlation between volumes. Intensity-
based methods repeatedly apply geometric transformations
to the floating volume so as to find the best registration

* This work was supported by the Foundation for the Authors of
National Excellent Doctoral Dissertation of China, under Grant
200038.

0-7803-8554-3/04/$20.00 ©2004 1IEEE.

voxels in the floating volume must be relocated after the
transformation. Therefore, geometric transformations are a
heavy load for registration, and a fast transformation
largely accelerates the correlation-based optimization
algorithms for image registration.

Shears can be implemented faster by hardware-level
memory shift than by voxel-by-voxel relocation. A resize
can be done by simple axis-aligned resampling. So if a
transform can be factorized into a series of shears and
resizes, the transformation must be faster. By using some
hardware or parallelism, the transform can be much faster.

Research on shear factorizations dates back to early
1980s, and a number of such algorithms have been
published in the literature, such as Catmull and Smith’s
two-pass pseudo-shear (shearing coupled with scaling)
factorization for 2D rotations [4], Paeth’s three-shear
factorization for 2D rotations [5], Hanrahan’s three-pass
pseudo-shear factorization for 3D affine transforms [6],
Wittenbrink and Somani’s three-shear factorization for 3D
rotations [7], Chen and Kaufman’s four-shear factorization
for 3D rotations [8].

For volume registration, Thevenaz and Unser
presented a four-pseudo-shear factorization for 3x3
matrices to interpolate volume data fast in three separate
dimensions [9]. Cox and Jesmanowicz proposed a real-
time 3D image registration for functional MRI by using
3D shear factorization of matrices [10]. The factorization
has four pure shears, but only for orthogonal matrices.

In this paper, we propose two shear-resize
factorizations to accelerate volume registration, which can
be applied to both rigid-body and affine transforms. Some
experiments on multi-modal medical volumes show their
efficiency, and they can be run much faster if implemented
with hardware.

2. ELEMENTARY TRANSFORMS

We have 3 cases of 2D slice shears: yz/x (shearing yz
slices by using x coordinate), xz/y and xy/z, and 3 cases of

1085

1D beam shears: x/yz (shearing x beams by using y and z
coordinates), y/xz and z/xy. They are denoted in this paper
as S (x,a,b)> S(y,a,b)> Ss(z,a,b) (for slice shears) and
S,(x,a,b)s S,(y,a,b)> S,(z,a,b) (for beam shears),
respectively. The matrices of the shears are respectively:

1 0 0]t @ O]|L O a|[1 a b|[1 O O]|1 O O
a 1 0|0 1 0/|0 1 b||{0 1 Of|la 1 b||O 1 O
b 0 1]/0 b 1]|0 0 1]]0 O 1]|0 O 1||a b 1

Generally, slice shears are faster than beam shears
because the data are better connected during each slice
translation. If the volume data is in a 3D memory, all slice
shears can be implemented the same fast by using memory
shift. However, in our experiments on PC, physically only
1D memory architecture is provided. For 3D volume, our
data is stored in row-major ordering, first by row (x), then
by column (y) and last by layer (z), so the shears are not
the same fast.

In order to capitalize on the neighboring connections
in the 1D memory, the intrinsic functions of “memory-
move” and “memory-copy” can be used to translate whole
or partial xy-slices and x-dimensional row beams. For
example, xz/y shear and xy/z shear can be implemented by
memory shift while yz/x shear can only be done by voxel-
by-voxel moving, which is time-consuming.

Table 1 shows the average running time for some
elementary transforms and for naive rotation and naive
general linear transformation on a PC (See Section 6).

Table 1. Average time for 3D transforms (ms)

volumessize | qy3 | og3 | 9568 512
transforms

X 0.26 5.73 46.97 361.55

translations y 0.10 3.94 36.52 293.40
z 0.09 4.13 50.88 445.38

3D 0.22 5.61 58.19 462.84

slice xy/z 0.10 4.04 35.17 287.66
shears xzly 0.19 7.20 51.82 366.14
yz/x 1.98 | 183.28 | 1866.25 | 19261.0

beam x/yz 0.48 5.75 37.10 297.76
shears y/xz 1.37 14.46 115.89 | 2117.59
z/xy 4.83 | 203.84 | 5422.13 | 34434.7

X 10.85 | 87.73 683.58 | 5435.71

resizes y 0.39 6.78 47.67 380.84

z 0.12 6.39 44.96 363.26

3D 11.37 | 91.33 709.62 | 5608.07

ransposes Xy 0.31 5.95 41.71 490.67
yz 0.38 5.66 48.21 1097.42
naive rotation | 50.27 | 403.18 | 3570.23 | 29338.0
transforms | linear | 56.08 | 471.58 | 4252.21 | 34347.3

According to Table 1, another factor that affects the
transformation speed is the usage of the CPU cache. For
example, the slowest yz/x shear, the slowest z/xy shear and
the slowest x resize can only be implemented by voxel-by-
voxel moving and the CPU cache is not efficiently used.

To accelerate a transform, the problem is how to find
a factorization with those fast elementary transforms.

3. SHEAR-RESIZE FACTORIZATIONS

As known in linear algebra, LU factorization A=PLU
exists if and only if A is non-singular, where P is a
permutation matrix, L is a unit lower triangular, and U is
an upper triangular matrix. It is easy to prove that a so-
called pseudo-permutation matrix (a unit upper triangular
matrix whose elements are all 0, 1 or —1, still denoted as
P) can play the role of the permutation matrix to convert
all leading principle minors into non-zeros, and the
nonsingular triangular matrix U can be further factorized
into a unit triangular matrix (denoted as U as well) and a
diagonal matrix D, and D can be flexibly moved to in front
of, in between, or behind those unit triangular matrices.

In paper [11], it is proved that the factorization
A=PLUS exists if and only if A is non-singular, where P is
a pseudo-permutation matrix, L is a unit lower triangular,
U is an upper triangular matrix whose diagonal elements
can all be customized as long as the determinant is the
same as det(A), and S is a special unit lower triangular
matrix, such as a matrix with the first column or the last
row off-diagonal elements being non-zeros. The
customizable diagonal elements of U can be further
extracted to form a diagonal matrix D and such a resize
matrix’s position can also be flexible. Thus, we can find a
factorization of A=DPLUS, where the axis-aligned scaling
factors of the resize are almost freely customizable.

Based on the above analysis, we can find a shear-
resize factorization of A=DPLU, where the resize is fixed
by the transform matrix and P, and a shear-resize
factorization of A=DPLUS, where the resize is
customizable. A customizable resize can be a uniform
resize, a non-uniform resize, or a resize only in one
dimension. To employ what factorization in a specific
system depends on what resize is the fastest in the system.

For a non-singular 3D linear transform matrix, if all
the leading principle minors are not zero, we have the
factorization of L, U and a fixed resize D as:

a, a, a, o 0 0|1 0 O||1 wuw u
a, ay ay|=/0 a O 1 0|0 1 u
ay a, a4y 0 0 e ||L L 1]]0 0 1

or A = DLU ’ Where a.xa)'az = det(A)’ax = all’

all alZ

o0, =det ao=a,la, u,=a,la,l=a,la,
i a21 a22 i

L=ayla l,=a,/la, —Lu, u,=ay/lo,—lu,.

If some off-diagonal minors are not zero, we can also

find a factorization of a unit lower triangular L, a unit
upper triangular U, a slice shear § or a beam shear S,

and a customizable resize D (without permutation matrix):

1086

A=DLUS(x,s,,s,)
where ¢ o o =det(A),u, =a, /e, u,=a,la,,
My = A Qyy = i3y , My = Ay 0y, — Ay,
L=a./(a, —Oly)/a12 /ay, u, =a23/0{y —lu,,
s, =(a.@, —my)/my, s = (a, —a,s,—)/ a,,
I, =(ay —ay,s, —ays,)/ &, L, =a, /o, —Lu,.
or A = DLUS,(z,s,,S,)
where o a a, =det(A),
My = a1 Gy = Ay, 1My = Ayl — A3y, My, =0y 1y — 130y,
w,=a,l e, s, =(a,—a,) a,, |, =(a, —LLBS,)/OIF, L, =(ay —ayus)/a,,
u, =my,), I, =(m, —a.a.) (aou,), u, =(my, +a,2,)(a,0u),
s, =(a, —ou)/ a;.
A matrix made of two unit triangular matrices LU can
be further factorized into 3 slice shears or 3 beam shears:
LU =8;(x,a,,a,)-S;(y,b,,b,)-S;(z,¢,,¢,)
where a=l, a,=1,, b=u, by=L, ¢,=u,~uu;, ¢, =u,-
LU=S,(z,a,,a,)-S;(y,b,,b,)- S, (x,c,,c,)
where G =uy, =iy, b=l by=uy, a,=lL,-1lL, a,=1
It should be mentioned that symmetrically-permuted

resizes are also resizes, symmetrically-permuted shears are
shears as well. For instance, P_S(x,a,b)P! =S (y,a,b)-

Now that some transposes are faster than some shears
and resizes (see Table 1), we can also use two transposes
and a faster shear or a faster resize to accelerate another
time-consuming shear or resize. For example, let D (a);

D (a)and D (o) be the resizes in x, y and z directions
and p_ be the xy transpose, we have:
A=DLU =DS(x,a,,a,)S;(y,b,,b,)S¢(z,c;,c,)
=D.(a.)D,(a,)D ()PP S(x,a,.a,)

xyT Xy

PP S (y,b,b,)S(z,¢,,¢,)

=D (a,)D,(a,)P,D (a)S(y,q,a,)-
P S (y.b,b,)S(z,cp.¢,)

After an xy transpose, we avoid the inefficient yz/x
shear and the slow x-resize or 3D resize.

4. OPTIMIZATION FOR REGISTRATION

Based on Shannon’s information theory, the mutual

information / for two images A and B is defined as
I(A,B)=H(A)+ H(B)-H(A,B)

where H(A) and H(B) are the entropy of image A and

image B, respectively, and H(A, B) is the joint entropy of

the two images.

An alternative normalized version of mutual
information was proposed by Studholme et al [12], which
is more robust when overlap area changes substantially. It
is defined as Y (A, B) = (H(A)+ H(B))/H (A, B).

The larger I(A, B) or Y(A, B) is, the more image A can
be predicted by image B, and thus the better they are
registered. The latter measure is used in our experiments.

In order to obtain the joint entropy H(A, B), we first
find the joint probability distribution, which is also called
joint histogram in image processing. In intensity-based
volume registration, a voxel in the floating volume is
usually located between voxels in the reference volume
after a geometric transformation. An interpolation method
such as the trilinear partial volume distribution (PV)
interpolation [2] can be used to update the joint histogram.
It uses the interpolation weights to change the 8 positions
(they may be the same) in the joint histogram. For faster
interpolation, the nearest neighbor (NN) method can be
used, which just changes one value in the joint histogram
for each nearest transformed voxel in the floating volume
and the method fits well for shear transformation.

The objective of volume registration is to find the
optimal transform. Our optimization is to maximize the
normalized mutual information. The optimal registration
parameters (geometric transformation) are found by

T =arg max Y(A,TB)

A rigid-body transform is a superposition of a rotation
and a translation, so it needs 6 arguments in 3D. In some
applications, rigid-body transformation is not enough. To
take scaling into account, we have 3 more arguments:
re.0,0.t.,t,.t,S.,S,S)-

There are many optimization strategies can be applied
to optimal geometric transform searching, among which
downhill simplex method [13] doesn’t require the
derivative of the criterion function. For fast optimization,
we partition the parameter space of affine transforms into
three subspaces, three parameters for translation, three for
rotation and three for resize. For each 3D subspace, we
use downhill simplex method for searching.

5. EXPERIMENTS AND DISCUSSION

We use Visual C++ under the Windows 2000 operating
system to run our experiments. The computer we use is a
PC with an AMD CPU (128K L1 and 512K L2 on-chip
cache, FSB 333MHz) and 512MB memory.

Our experiments are performed on a 256x256x109
MRI data set of a human head and a 256x256x113 CT
data set of a cadaver head (www.siggraph.org/education/
materials/). In order to make the measured experimental
time comparable, we resample the data into cubes of 64°,
128° and 256°. The running time for the linear
transformation is tested by the registration of the two
volume data sets. We take the MRI data as the reference
volume and the CT data as the floating.

In order to keep the data without loss during the
shears, the shears are implemented in a double-sized cube

1087

(eight times the memory). After the shears, it’s reasonable
to cut it into the original size for fast registration. Thus, we
implement the transpose only in valid data region.
Memory reallocation is needed for some auxiliary work.

The average running time for transforms during
registration are listed in Table 2. The shear-resize
transformation is about 10 times faster than the naive.

Some slices and rendered images are shown in Figure
1. We can see that the two volumes are well registered.

Table 2. Time for 3D image registration (ms/iteration)

Imagesize| g3 | 280 | 256°
Transform
Translation 0.30 6.39 54.07
Transform Resize 1.79 28.15 | 208.80
using 3 shears 1.52 27.12 | 160.20
Shear-Resize Memo
Factorization Reallocagon 1.46 19.13 113542
Total 5.06 80.79 | 558.50
Naive Transformation 63.33 | 508.31 [4163.69

6. CONCLUSION

Some 3D shear-resize factorizations are proposed to make
intensity-based volume registration fast. A 3D linear
transform can be factorized into three shears and a fixed
non-uniform resize, or four shears and a customizable
resize. The factorizations can be applied to both rigid-
body and affine transformations. With some transpose, the
method is 10 times faster than naive transformation. If
shears and resize can all be implemented with hardware,
affine transformation using shear-resize factorizations is
remarkably faster than the naive transformation, and the
hardware architecture is not complicated for pure shears
and axis-aligned resize. Anyway, the quantitative
evaluation and more efficient implementation of our shear-
resize factorizations are needed for our future work.

Side
View

Top
View

Front
View

Reference Floating

7. REFERENCES

[1] P. Viola, and W.M. Wells III, “Alignment by maximization
of mutual information,” Int. Conf. on Computer Vision, pp. 16-
23, 20-23 June 1995.

[2] A. Collignon, F. Maes, et al, “Automated multi-modality
image registration based on information theory,” in Information
Processing in Medical Imaging, Kluwer, pp. 263-274, 1995.

[3] D. L. G. Hill, P. G. Batchelor, M. Holden, D. J. Hawkes
“Medical Image Registration,” Physics in Medicine and Biology,
vol 46, pp 1-45, 2001.

[4] E. Catmull, and A.R. Smith, “3-D transformations of images
in scanline order,” ACM Computer Graphics (SIGGRAPH), vol.
14, n. 3, pp. 279-285, 1980.

[5] A.W. Paeth, “A fast algorithm for general raster rotation,” In
Proceedings of Graphics Interface, pp. 77-81, 1986.

[6] P. Hanrahan, “Three-pass affine transforms for volume
rendering,” Computer Graphics, vol. 24, n. 5, pp. 71-77, 1990.
[7] C.M. Wittenbrink, and A.K. Somani, “Permutation warping
for data parallel volume rendering,” ACM SIGGRAPH
Symposium on Parallel Rendering, pp. 57-60, 1993.

[8] B. Chen, and A.E. Kaufman, “3D Volume Rotation Using
Shear Transformations,” Graphical Models, vol. 62, n. 4, pp.
308-322, 2000.

[9] P. Thevenaz, and M. Unser, “Efficient geometric
transformations and 3-D image registration,” Int. Conf. on
Acoustics, Speech, and Signal Proc., vol.5, pp.2919-2922, 1995.
[10] R.W. Cox, and A. Jesmanowicz, “Real-Time 3D Image
Registration for Functional MRIL” Magnetic Resonance
Medicine, 42, pp. 1014-1018, 1999.

[11] P. Hao, “Customizable triangular factorizations of
matrices,” Linear Algebra and its Applications, vol. 382, pp.
135-154, 2004.

[12] C. Studholme, D.L.G. Hill, and D.J. Hawkes, “An overlap
invariant entropy measure of 3D medical image alignment,”
Pattern Recognition, vol. 32, pp. 71-86, 1999.

[13] W.H. Press, S.A. Teukolsky, et al, “Numerical Recipes in
C: The Art of Scientific Computing,” 2nd ed, Cambridge
University Press, 1992.

Registered

Reference Floating Registered

Figure 1. Three-views of the reference, the floating and the registered volume (slices and rendered images)

1088

	Index
	ICIP 2004 Home Page
	Conference Info
	Welcome Message
	Techincal Program Overview
	Technical Program Committee
	EDICS Categories
	ICIP2004 Paper Submission Statistics
	ICIP2004 Paper Statistics - Final Program
	ICIP2004 Organizing Committee
	Sponsors
	Exhibition
	Venue Access
	Social Activities
	Other Information
	Call for Papers for ICIP2005

	Sessions
	Monday, 25 October, 2004
	MA-S1-Computational Radar Imaging
	MA-L1-Watermarking I
	MA-L2-Face Recognition
	MA-L3-Video Compression Standards I
	MA-L4-Biomedical Image Processing: Segmentation and Qua ...
	MA-L5-Error Resilience / Concealment I
	MA-P1-Image Segmentation: By Color, Texture, and Edge
	MA-P2-Image Filtering and Morphological Processing
	MA-P3-Image Enhancement I
	MA-P4-Video Segmentation
	MA-P5-Low-level Image Indexing and Retrieval
	MA-P6-DCT-based Video Coding
	MA-P7-Image Compression and Applications
	MA-P8-Distributed Source Coding and Others
	MP-S1-Deformable Models and Applications
	MP-S2-Media Security Issues in Streaming and Mobile App ...
	MP-L1-Face Detection, Recognition, and Classification I
	MP-L2-Video Summarization and Browsing
	MP-L3-Image Filtering and Partial Differential Equation ...
	MP-L4-Image/Video Indexing and Retrieval
	MP-L5-Watermarking II
	MP-P1-Video Compression Standards II
	MP-P2-Error Resilience/Concealment II
	MP-P3-Biometrics I
	MP-P4-Image Segmentation: By Multiple Features and Othe ...
	MP-P5-Image Enhancement II
	MP-P6-Video Object Tracking
	MP-P7-Biomedical Image Processing: Compression and Regi ...
	MP-P8-Video Coding

	Tuesday, 26 October, 2004
	TA-S1-Content-based Analysis of Multi-modal High Dimens ...
	TA-S2-Image Forensics
	TA-L1-Feature-based Image Segmentation
	TA-L2-Denoising and Deblurring
	TA-L3-Biometrics II
	TA-L4-Lossy Image Coding
	TA-L5-Wavelet Video Coding and Scalability I
	TA-P1-Stereoscopic and 3-D Processing I
	TA-P2-Face Detection, Recognition and Classification II
	TA-P3-Motion Detection and Estimation: Block Matching
	TA-P4-Feature Extraction and Analysis: Color and Textur ...
	TA-P5-Watermarking III
	TA-P6-Video Indexing, Retrieval and Editing
	TA-P7-Interpolation
	TA-P8-Geosciences and Remote Sensing and Environment
	TP-S1-What is the Latest in Networked Video?
	TP-L1-Super-resolution and Interpolation
	TP-L2-Deblocking, Restoration, and Enhancement
	TP-L3-Motion Estimation and Detection
	TP-L4-Image Segmentation
	TP-L5-Biomedical Image Processing: Compression, Registr ...
	TP-P1-Stereoscopic and 3-D Processing II
	TP-P2-Face Detection, Recognition and Classification II ...
	TP-P3-Video Streaming and Networking
	TP-P4-Shape Extraction and Analysis
	TP-P5-Watermarking IV
	TP-P6-Image/video Storage and Retrieval
	TP-P7-Wavelet Video Coding and Scalability II
	TP-P8-Image Modeling

	Wednesday, 27 October, 2004
	WA-S1-Content Understanding for Home Photograph and Vid ...
	WA-S2-Pattern Discovery in Real-world Broadcast Video
	WA-L1-Image Scanning, Display, and Printing I
	WA-L2-Image Formation I
	WA-L3-Stereoscopic and 3-D Coding & Processing
	WA-L4-Image Coding I
	WA-L5-Source-Channel Coding I
	WA-P1-Motion Detection and Estimation: Optical Flow and ...
	WA-P2-Watermarking V
	WA-P3-Feature Extraction and Analysis I
	WA-P4-Image Segmentation: Level Set and Active Contour
	WA-P5-Transcoding
	WA-P6-Implementations and Systems
	WA-P7-Document Image Processing and Other Applications
	WA-P8-Biomedical Image Processing: Segmentation and Com ...
	WP-L1-Image Representation, Rendering, and Quality Asse ...
	WP-L2-Stereoscopic Image Processing and 3D Modeling
	WP-L3-Feature Extraction and Analysis II
	WP-L4-Image/Video Segmentation and Tracking
	WP-L5-Distributed Source Coding and Scalability
	WP-L6-Video Streaming
	WP-P1-Image Coding II
	WP-P2-Source-channel Coding II
	WP-P3-Stereoscopic and 3-D Coding
	WP-P4-Super-resolution and Mosaic
	WP-P5-Image Formation II
	WP-P6-Motion Detection and Estimation: Other Methods
	WP-P7-Watermarking and Cryptography
	WP-P8-Image Segmentation: Clustering and Statistical Me ...
	WP-P9-Image Scanning, Display, and Printing II

	Tutorials
	Plenary Sessions
	Special Sessions
	Table of Contents of Printed Proceedings

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	1.1.1: Lossy coding
	1.1.2: Lossless coding
	1.1.3: Image compression standards
	1.2.1: DCT-based video coding
	1.2.2: Wavelet-based video coding
	1.2.3: Model-based video coding
	1.2.4: Scalability
	1.2.5: Transcoding
	1.2.6: Video compression standards
	1.2.7: Other
	1.3: Stereoscopic and 3-D Coding
	1.4: Distributed Source Coding
	1.5.1: Source/channel coding
	1.5.2: Networking
	1.5.3: Error resilience / concealment
	1.5.4: Video streaming
	1.5.5: Other
	2.1.1: Linear filtering
	2.1.2: Nonlinear filtering
	2.1.3: Level set and fast marching
	2.1.4: Partial differential equations
	2.1.5: Other filtering techniques
	2.2.1: Multiframe image restoration
	2.2.2: Contrast enhancement
	2.2.3: Deblocking / artifacts removal
	2.2.4: Deblurring
	2.2.5: Denoising
	2.2.6: Other restoration techniques
	2.2.7: Other enhancement techniques
	2.3.1: By edge
	2.3.2: By color
	2.3.3: By texture
	2.3.4: By multiple features
	2.3.5: By other features
	2.3.6: Active-contour / snake-based methods
	2.3.7: Clustering-based methods
	2.3.8: Model-fitting-based methods
	2.3.9: Statistical-classification-based methods
	2.3.10: Morphological-based methods
	2.3.11: Level-set-based methods
	2.3.12: Other segmentation methods
	2.4.1: Video object segmentation
	2.4.2: Temporal segmentation
	2.4.3: Video shot segmentation
	2.4.4: Tracking
	2.4.5: Other video segmentation techniques
	2.4.6: Other tracking techniques
	2.5: Morphological Processing
	2.6.1: Stereo image processing
	2.6.2: 3D modeling & synthesis
	2.6.3: Other techniques
	2.7.1: Color
	2.7.2: Texture
	2.7.3: Shape
	2.7.4: Shading
	2.7.5: Other features
	2.8.1: Perceptual / human visual system
	2.8.2: Source modeling
	2.8.3: Noise modeling
	2.8.4: Other
	2.9.1: Face detection, recognition and classification
	2.9.2: Fingerprint analysis and coding
	2.9.3: Iris analysis
	2.9.4: Human activity, gait analysis, and gaze analysis
	2.9.5: Goal-oriented analysis tasks
	2.9.6: Other
	2.10.1: Interpolation
	2.10.2: Super-resolution
	2.10.3: Mosaic
	2.10.4: Registration / alignment
	2.10.5: Other techniques
	2.11.1: Block matching
	2.11.2: Optical flow
	2.11.3: Parametric model for motion estimation
	2.11.4: Change detection
	2.11.5: Camera calibration
	2.11.6: Other motion detection techniques
	2.11.7: Other motion estimation techniques
	2.12.1: Hardware and software co-design
	2.12.2: Embedded and real-time systems
	2.12.3: Paralleled and distributed systems
	2.12.4: Other system platforms
	3.1.1: Super-acoustic imaging
	3.1.2: Tomographic imaging
	3.1.3: Nuclear and x-ray imaging
	3.1.4: Magnetic resonance imaging
	3.1.5: Other
	3.2.1: Radar imaging
	3.2.5: Multispectral / hyperspectral imaging
	3.2.6: Other
	3.4: Optical Imaging
	3.5: Synthetic-Natural Hybrid Image Systems
	4.1: Scanning and Sampling
	4.2: Quantization and Halftoning
	4.3: Color Reproduction
	4.4: Image Representation and Rendering
	4.5: Display and Printing Systems
	4.6: Image Quality Assessment
	5.1: Image and Video Databases
	5.2.1: Low-level image indexing and retrieval
	5.2.2: Relevance feedback and interactive retrieval
	5.2.3: Content addressable browsing
	5.3.1: Video partition/shot detection
	5.3.2: Video features for retrieval
	5.3.3: Low-level video indexing and retrieval
	5.3.4: Semantic video retrieval
	5.3.5: Content summarization and editing
	5.4: Multimodality Image/Video Indexing and Retrieval
	5.5.1: Watermarking
	5.5.2: Cryptography
	6.1.1: Image segmentation and quantitative analysis
	6.1.2: Computer assisted screening and diagnosis
	6.1.3: Visualization
	6.1.4: Image compression
	6.1.5: Image registration and fusion
	6.2.1: Astronomy
	6.2.2: Geosciences
	6.2.3: Remote sensing
	6.2.4: Environment
	6.3: Document Image Processing and Analysis
	6.4: Other Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Copyright
	Current paper
	Presentation session
	Abstract
	Authors
	Pengwei Hao
	Ying Chen
	Jian Yu

