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ABSTRACT

We report on our work-in-progress into the use of reliabil-
ity analysis to quantify information leaks. In recent work
we have proposed a software reliability analysis technique
that uses symbolic execution and model counting to quan-
tify the probability of reaching designated program states,
e.g. assert violations, under uncertainty conditions in the
environment. The technique has many applications beyond
reliability analysis, ranging from program understanding and
debugging to analysis of cyber-physical systems. In this pa-
per we report on a novel application of the technique, namely
Quantitative Information Flow analysis (QIF). The goal of
QIF is to measure information leakage of a program by using
information-theoretic metrics such as Shannon entropy or
Rényi entropy. We exploit the model counting engine of the
reliability analyzer over symbolic program paths, to compute
an upper bound of the maximum leakage over all possible
distributions of the confidential data.

We have implemented our approach into a prototype tool,
called QILURA, and explore its effectiveness on a number of
case studies.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]|: Formal meth-
ods; D.4.6 [Security and Protection]: Information flow
controls

General Terms
Algorithms, Performance, Security, Theory, Verification
Keywords

Quantitative Information Flow; Reliability Analysis; Model
Counting; Symbolic Execution

1. INTRODUCTION

Quantitative information flow analysis (QIF [7, 14]) is a
rigorous approach to measuring information leakage. The
intuition is that absolute security is hard to achieve, con-
sequently, under some circumstances, programs with small
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u int check(int L, H){
—_— o int U;
L N e if (H < 16)
L } 0 =L + H;
(& else 0 = L;
Adversary e return 0;
tries to infer }
H from L and O

Figure 1: 2* (=4 bits) distinct outputs for H > 0.

leaks are acceptable as secure. QIF has gained considerable
attention in recent years. It has been used to analyze soft-
ware confidentiality [4, 10, 16], to measure loss of anonymity
in communication protocols [6, 19], and to assess leakage
of information via side-channels [8]. QIF builds on the hy-
pothesis that a malicious user can make observations on the
public input and output data used in a function call to infer
confidential data. The technique measures the reduction in
uncertainty about the secret as an hypothetical malicious
user makes observations on public data.

In recent work we have developed a software reliability
analysis technique [9] that uses a bounded symbolic execution
to collect a set of symbolic paths over the analyzed programs.
The path constraints associated with the paths are combined
with given probabilistic usage profiles and analyzed using
model counting techniques [1] to quantify the probability of
reaching designated program states (e.g. successful termina-
tion or the opposite, failure states such as assert violations).
In this work we adapt the reliability analysis to QIF by con-
sidering information leakage as the failure states and using
model counting over the input constraints to quantify the
likelihood of leakage assuming a uniform usage profile.
Example. Figure 1 shows an example function that we use
to illustrate QIF. It is a convention in the security literature
to use the label L (“low”) to denote non-sensitive input, to
use the label H (“high”) to denote sensitive private input,
and to use the label O (“output”) to denote the output. A
malicious user has access to the public data, L and O, and
tries to infer the hidden secret, H, from that.

Automating QIF analysis is a challenge. For example, to
analyze the program above, in [16] and more recently [17], the
authors manually transformed it into bit vector predicates.
Other papers require users to have verification expertise to
use an interactive theorem prover [12], or require user to
write a driver following a template [10] or to instrument the
program under test [13].

In this paper, we introduce an automated tool, QILURA
(Quantify Information Leaks Using Reliability Analysis),
for QIF analysis. Given a program, and inputs labeled as
high and low, QILURA computes an upper bound on the



maximum number of bits that the program can leak to a
public observer. Our implementation is done in the context of
Java bytecode programs and the SPF [21] symbolic execution
engine, extended for reliability analysis [9]. However, the
work is general and can be applied in the context of any
programming language for which a symbolic execution tool
exists.
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Figure 2: Architecture of QILURA

At a high level, the architecture of QILURA is depicted in
Figure 2. The user labels the inputs of the program with high
and low. The program is then passed to SPF to collect all
possible symbolic paths. The Labeling Procedure, using a fine-
grained self-composition [5], classifies all the paths into three
categories: clean, direct and indirect. The procedure uses
z3 [3] for satisfiability checking of self-composition condition.

Finally, the Quantifying Procedure uses model-counting
techniques [1] over the symbolic constraints (simplified using
Omega [2]) collected by SPF to count the number of inputs
that follow paths labeled with “direct” and provides an upper
bound of k£ bit on the leaks.

2. PRELIMINARIES

2.1 Quantitative Information Flow

Consider again the program in Figure 1 in the case L =
0x1000. Clearly, only integer values from 0x1000 to 0x100f
are possible outputs for this function. An attacker has hence
16 possible output choices depending on the value of H:
observing outputs 0x1001 .. 0x100f reveals that H is in the
range [1,15] and observing output 0x1000 reveals that the
secret is 0 or greater than 15.

Let Xp , X1 and Xo be random variables representing
the distribution of H, L, and and O, respectively. Assuming
the attacker only knows that H is a 32-bit variable, his a-
priori probability of guessing the value of H in one try is
2%. which leads to the uncertainty of H measured in Rényi’s
min-entropy [22] is: E(Xpu) = —log,(53z). Moreover, the
expected probability of guessing the secret in one try after
observing the outputs is:

15 2°2-15 1 15 1 16
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which leads to the remaining uncertainty after observing
O is: E(Xu|XL = 0x1000, Xo) = —log, (555 ). Leakage is
calculated as the reduction of uncertainty of H after the
observation

AE(XH) = E(XH) — E(XH|XL = 0X1000,Xo) = 10g2(16)

Notice that log(16) = log (number of output observations):
this is not a coincidence. A fundamental QIF result (the
channel capacity theorem [15, 22]) shows that leakage for a
program is always less than or equal to the log of the number
of observables of the program. More importantly the result

holds if we consider not only the above notion of leakage
based on the probability of guessing the secret [22] but also
the notion of leakage based on Shannon’s information theory
measuring the number of bits leaked [7]. For these reasons
counting the number of observables is the basis of state-of-
the-art QIF analysis, e.g. [16, 10, 20, 13, 17, 19], and also
the basis for this work. The channel capacity theorem also
justifies the following;:

DEFINITION 1. Given a program P, QIF is the problem
of counting N, the number of possible outputs of P. logy(N)
is the channel capacity (i.e. the mazximum leakage) of the
program P, denoted by CC(P), measured by Shannon entropy
or Renyi’s min-entropy.

2.2 Symbolic Execution

Symbolic Execution (SE) [11], is a program analysis tech-
nique which executes programs on unspecified inputs, by
using symbolic inputs instead of concrete data. For each
executed program path, the analysis builds a path condition
pc, i.e. a conjunction of boolean conditions characterizing
the inputs that follow that path. This pc is built according
to the branching conditions in the code and it is checked
for satisfiability using off-the-shelf solvers. If a pc becomes
unsatisfiable it means that the corresponding path is not
feasible in the program (and the analysis backtracks). The
execution paths followed during the symbolic execution of
a program are characterized by a symbolic execution tree.
The nodes represent program (symbolic) states and the arcs
represent transitions between states.

In the setting of SE, the program P is modelled as a (tree-
like) transition system: P = (X, I, F,T), where X is the set
of symbolic states; I C X is the set of initial symbolic states;
F C ¥ is the set of final symbolic states; and T'C ¥ x X is
the transition function. A symbolic path of P is represented
by a sequence of symbolic states: p = ogo1..0,, such that
oo € I,0n, € F and (04,0i41) € T for all i € {0,...,n — 1}.
The symbolic semantics of P is then defined as the set of
all symbolic paths R (i.e. the symbolic execution tree). We
define two functions init and fin to get the initial state and
final state of p: init(p) = oo and fin(p) = on.

We denote by X|, the value of the variable X at the state
y. After symbolically executing the program P with initial
input symbols H = o, L = 3, for each o; € F, i.e. each leaf
of the symbolic execution tree, we have a symbolic formula
fi for the value of the output O in the symbolic environment:
O|s; = fi(a, B). The path condition pc; is a formula c¢;(a, 3)
expressing the condition for state o; to be reachable. Each
pc; corresponds to a symbolic path p;. We define the function
path such that: path(p;) = pc; = ¢i(a, B).

2.3 Reliability Analysis

In previous work we described a reliability analysis tool
[9] based on symbolic execution and model counting. The
tool takes as input a Java program and the usage profile
and computes an estimate of the probability for satisfying
(or violating) a property of interest, e.g. an assertion in the
code or a designated observable event. Internally, the tool
uses a bounded symbolic execution (SPF [21]) to produce
a set of path constraints which are then classified in the
sets pe? and pcf based on whether the paths lead to the
the target event (T) or not (F). A third set pc® (G stands
for “grey”) characterizes the paths for which the event did
not occur, but the bound was hit (e.g. due to loops or



recursion). The path constraints define disjoint input sets
and cover the whole input domain of the program [11]. The
tool then quantifies the probability of each set. Note that
the computed probability for pc® results in a measure for
the confidence in the results obtained within the bound (the
lower the probability the higher the confidence); see [9]. For
the sake of space we will not consider grey paths here; we
will instead label them as “T".

The probability of satisfying the property is defined as the
probability of an input distributed according to the usage
profile to satisfy any of the path constraints in pc?. Assum-
ing a uniform usage profile, this probability is #(pc”)/#(D),
where #(ch) is the number of solutions satisfying the dis-
joint constraints in pc” and #(D) is the size of the finite
(but possibly very large) input domain D. #(pc”) can be
computed efficiently using model-counting techniques such
as Latte [1]. For QILURA we do not compute probabili-
ties but use directly the counts over the computed symbolic
constraints.

3. QILURA

At a high level, QILURA performs a two-step analysis.
First, SE is run to collect all symbolic paths of the program
(up to a user-specified depth), then each path is assigned a
label: (i) clean: if it leaks no information, (ii) direct: if
it leaks information via direct flow, and (iii) indirect: if it
leaks information via indirect flow. Secondly, a model counter
for symbolic paths from [9] is used to count the number of
possible inputs that go to “direct” paths, and compute an
upper bound on the leakage. QILURA is available at:
https://github.com/qif/jpf-qilura.

3.1 Fine-grained self-composition

Given a program P that takes secret input H, public input
L and producing public output O, we denote by P’ the same
program as P, with all variables renamed: H as H', L as L’
and O as O'. Following [5] we express self-composition by
the Hoare triple:

{L=L}P;P{O=0"} (1)

This Hoare triple states that if the precondition L = L’ holds,
then after the execution of P; P’, the postcondition O = O’
also holds. Thus, satisfying the triple guarantees that the
program P does not leak information.

We run SE on the self-composed program P; P’ with input
symbols as follows: H = a, H' = a1, L = L' = 3. Thus
the precondition automatically holds. Assume the symbolic
semantics of P and P’ is R and R’ respectively. The self-
composition formula in (1) can be re-written as:

Vp € R,p" € R .path(p) Apath(p’) — Olsin(p) = O'\fm<”('>
2

In case (2) is violated, if p’ and p are the same symbolic
path up to renaming then p leaks information via direct flow,
otherwise p and p’ leak information via indirect flow.

The implementation for checking self-composition is built
from (2) as in Figure 3. The function isSAT is implemented
by calling the SMT solver z3 [3].

3.2 Model counting for symbolic paths

For a symbolic path p, let #in(p) and #out(p) denote
the number of concrete inputs and outputs of p respectively.
Obviously #in(p;) is #(pci) computed in [9]. After being

for all p; do {
label[i] < clean

¢ —ci(a, B) Aci(ar, B) A =(fi(e, B) = fi(ar, B))
if (isSAT(y)) then labeli] «+ direct

fori=1ton—1do
forj=i+1tondo {
p — ci(a, B) Acjlan, B) A=(file, B) = fi(ea, B))
if (isSAT(p)) then {
if (label[i] = clean) then label[i] < indirect
if (label[j] = clean) then label[j] < indirect

}

Figure 3: Fine-grained self-composition

labeled, all paths are classified into three categories: clean,
direct and indirect. So the channel capacity is bounded by:

CO(P) < log, (S#out(pe) + S#out(p:) + S#out(pa))

where p. is the clean path, p; is the indirect path, and pq is
the indirect path.

e Since clean paths are not interfered by the confidential
input we can replace L#out(p.) with 1.

e An indirect path only reveals that the program follows
that path, its output is not interfered, and each path
has one output. Thus, Y#out(p;) is just the number
of indirect paths.

e We hence only need to compute Z#out(pa).

A deterministic program can be viewed as a function that
maps each input to exactly one output (denotational seman-
tics). Therefore, the number of inputs is always greater than
or equal to the number of possible outputs. This means
#in(p) > #out(p), and Xfin(pa) > L#out(pa).

By using the model counting engine for symbolic paths in
[9], we can compute X#in(pq), and hence compute an upper
bound of channel capacity CC(P).

4. EVALUATION

Automated QIF analysis is notoriously hard. To the best
of our knowledge, the only tool for QIF analysis of Java
bytecode is our own work jpf-qif [20] which uses SE for QIF
analysis, but no model counting. Instead jpf-qif adds the
conditions for testing each bit of the output at the end of
the program, hence exploring all these conditions using SPF.
We compare jpf-qif with QILURA below.

We also compare with BitPattern [16], which computes an
upper bound on channel capacity by exploring the relations
between every pair of bits of the output. In more recent
work [17], BitPattern was improved using new heuristics. We
compare QILURA with (the improved) BitPattern on several
case studies taken from [16, 17].

Moreover, we consider

a special case when the if (H > 999){
program does not leak 0 -1;
any information to assess o H; 0 =0 - H;

the.z effectiveness arlld pre- Case Study 1: No Flow
cision of our technique in

such a corner case. The program does not leak information
because the output O is always 0 regardless of the value
of the secret H. However, the assignment O = H and the


https://github.com/qif/jpf-qilura

jpf-qif ILURA BitPattern

Case Study Capagi[;yq Time UppelfQ Bound | Time | Upper Bound | Time
No Flow 0 2.304 0 0.790 - -

Sanity check, base =0x00001000 4 45.324 4.09 1.066 4 0.036
Sanity check, base =0x7ffffffa 4 35.346 4.09 1.049 4.59 0.203
Implicit Flow 2.81 0.897 3 0.796 3 0.011
Electronic Purse 2 1.169 2.32 0.854 2 0.157
Ten random outputs 3.32 1.050 3.32 0.814 18.645 0.224

Figure 4: Capacity and bounds are in bits, times are in seconds. “-” means “not reported”.

condition H > 999 make the program be rejected by other
qualitative information-flow techniques, e.g. the ones based
on type systems or taint analysis.

Results and discussions

Figure 4 summaries our experiment, we take the time from
the faster version of BitPattern in [17]. Note that in both
[16] and [17], the authors manually transform the programs
into bit vector predicates, so there will be extra time if they
automate this process.

As shown in the figure, the upper bounds computed by
QILURA only deviate to a small extent from the exact
channel capacities computed by jpf-qif. However, by using a
model counting tool, QILURA is much faster.

The BitPattern technique can also compute rather tight
upper bounds in most of the cases. However, by analysing
the relations of pairs of bits, the technique is vulnerable when
possible values of the output are not in a specific range, as
shown in the last case study.

S. RELATED WORK

Backes et al. [4] describe how to use the model checker
ARMC and Latte for QIF analysis. Their technique is very
precise but also extremely expensive: it involves input count-
ing to compute the pre-image of the observables; in contrast
our input counting is used for counting the observable. The
work was extended in [12] which uses KeY, an interactive
theorem prover, instead of ARMC, but requires significant
user effort.

The only technique that can precisely determine if a pro-
gram leaks information is self-composition [5]. QILURA also
uses self-composition with the key difference that it is able
to determine if a single symbolic path leaks information. A
preliminary idea on verifying self-composition using SE has
been reported in a student workshop [18].

6. CONCLUSION AND FUTURE WORK

In this paper we presented QILURA which embodies a
novel application of reliability analysis based on symbolic
execution and model counting to Quantitative Information
Flow analysis. QILURA is still just a prototype but our
preliminary experiments show encouraging results. We plan
to perform larger case studies, and to investigate approxi-
mate exploration techniques (instead of the exact, complete
exploration presented here), for increased scalability, but
with formal statistical guarantees on the results.
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