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Abstract

The problem of modelling the semantics of visual events without segmentation or computation of object-centred trajectories is addressed.

Two examples are presented. The first illustrates the detection of autonomous visual events without segmentation. The second shows how

high-level semantics can be extracted without spatio-temporal tracking or modelling of object trajectories. We wish to infer the semantics of

human behavioural patterns for autonomous visual event recognition in dynamic scenes. This is achieved by learning to model the temporal

structures of pixel-wise change energy histories using CONDENSATION. The performance of a pixel-energy-history based event model is

compared to that of an adaptive Gaussian mixture based scene model.

Given low-level autonomous visual events, grouping and high-level reasoning are required to both infer associations between these events

and give meaning to their associations. We present an approach for modelling the semantics of interactive human behaviours for the

association of a moving head and two hands under self-occlusion and intersection from a single camera view. For associating and tracking the

movements of multiple intersecting body parts, we compare the effectiveness of spatio-temporal dynamics based prediction to that of

reasoning about body-part associations based on modelling semantics using Bayesian belief networks. q 2002 Elsevier Science B.V. All

rights reserved.

Keywords: Adaptive Gaussian mixture models; Autonomous visual events; Bayesian belief nets; CONDENSATION; Discontinuous motion trajectories;

Dynamic scene models; Pixel-energy-history; Segmentation; Semantics of visual behaviour

1. Problem statement

Understanding visual behaviour is essential for the

interpretation of human actions captured in image

sequences [7,42,46]. Visual behaviours are often rep-

resented as structured patterns of visual events, e.g. ordered

sequences or continuous object-centred trajectories of

measurable imagery properties including object shape,

colour and position. The difficulty in understanding

behaviour lies with the ability (or lack of it) to automatically

map such measurable visual representations to their

semantics, i.e. meaning, which cannot be measured directly

from the image. Despite the fact that behaviours are best

defined by structured, often discrete and sparse visual

events, one usually assumes that behaviour modelling starts

with tracking the trajectories of the objects of interest. It is

intrinsically flawed to assume that consistent object-centred

trajectories can be computed in cluttered scenes with

frequent object overlapping and occlusion using visual

information alone without invoking semantics. To this end,

we consider the following two problems:

Learning the semantics of autonomous visual events: We

consider that visual events are localised autonomous

changes of meaningful states in the image over time. They

are not necessarily reflected by any absolute visual change

such as regular pixel colour change in the scene. An

autonomous visual event is considered to be part of a

behaviour with its local semantics. For example, constant

rapid scene change observed on a motorway is usually not

being perceived as events of significance. However, a

sudden absence of change might reveal an accident. Here we

consider the problem of learning higher-level semantics

through detecting local visual events without explicit object

segmentation and motion grouping.

Modelling semantics for interpreting human behaviours:

We also consider the problem of modelling semantics for

associating erratically overlapping and discontinuous but

highly natural behavioural patterns involving multiple

intersecting hands, arms and head movement occurring in

interactive human actions. The problem is significant

because computing trajectories of multiple intersecting

and overlapping objects relies heavily on object-centred

0262-8856/02/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 26 2 -8 85 6 (0 2) 00 0 96 -3

Image and Vision Computing 20 (2002) 873–888

www.elsevier.com/locate/imavis

* Corresponding author. Tel.: þ44-207-975-5249; fax: þ44-208-980-

6533.

E-mail address: sgg@dcs.qmul.ac.uk (S. Gong).

http://www.elsevier.com/locate/imavis


segmentation and motion grouping, which is severely ill-

defined in interactive behaviour without semantics.

2. Related work and motivation

There is an increasing body of work in the literature on

modelling visual behaviours of human actions. In visual

surveillance, a visual behaviour is considered to be a

meaningful interpretation (labelling) of a type of object

trajectories (model) extracted from image sequences, often

taken by a fixed camera. The task is to learn different

common trajectory models and the labelling of these

models, which can subsequently be employed to detect

abnormal behaviour. The typical approach has been to track

individual objects in the scene [20,49,50]. Similarly,

reliable markerless tracking of the human head and hands

configuration is often a pre-condition for natural gesture

recognition. Such tracking usually relies on edges [3,8,16,

37], skin colour or motion segmentation [22,30,34,50], or a

combination of these with other cues including depth [1,27,

40,58]. If tracking is to be used for recognition, a 2D model

of the body will suffice [22,34]. On the other hand, a 3D

model of the body may be required for generative purposes,

e.g. to drive an avatar, in which case skeletal constraints can

be exploited [8,40,58], or deformable 3D models can be

matched to 2D images [16,37].

Provided object-centred trajectories can be reliably

extracted, a common approach to model visual behaviours

of moving objects employs their motion trajectory templates

[2,15,24,57]. A motion trajectory template is a holistic and

static trajectory shape model of a cluster (class) of object

motion trajectories in space and over time. One significant

problem with this approach is uncertainty in temporal scale.

It is often ambiguous over what temporal scale behaviours

and events, therefore the duration of their trajectories,

should be defined without any knowledge about the

underlying semantics of the behaviour in question. Another

significant problem is object segmentation and motion

grouping. Explicitly tracking people in busy scenes such as

in a shopping mall requires object segmentation that is both

conceptually difficult and computationally ill defined. This

is equally true when multiple occluding body parts are

encountered in interactive behaviours. Stauffer and Grimson

[48,49] proposed an approach for object segmentation based

on pixel-wise information alone using an adaptive Gaussian

mixture model of the scene background. However, the

method does not overcome the difficulties in maintaining a

consistent object representation from frame-wise detected

regions of foreground pixels. In general, imposing the

semantics of behaviours and their context is necessary for

robust object segmentation and motion grouping.

The notion of semantics was originally defined in

linguistics as the relationship of a representation and its

meaning. This concept was further extended by Korzybski

to general semantics [55]. Semantics has three basic

concerns including the structure (syntax) of a represen-

tation, the processes (interpreters) operating on the rep-

resentation and the meaning (truth) of the representation,

also known as its semantic properties. Suppose that the

representation of a human behaviour is given by its visual

observations. In representational terms, such observations

can be defined by either causally or temporally structured

sequences of events. Different structure or order can both

change the characteristics of behaviour. If behaviours are

modelled as a set of discrete events, for example, in the form

of a Hidden Markov Model (HMM), the notion of state

transition is then regarded as the temporal structure of

relating temporally ordered visual events in space and time

[17,19]. State transitions are learned from example

sequences of visual events often manually clustered and

labelled [4,6,13,18,19,29,52]. Methods for automatic

temporal clustering of HMM states have also been proposed

[5,28,53,54].

Changes in the structure of a representation alters the

underlying context therefore its semantics. This can be

modelled as belief revision [14]. In particular, Bayesian

belief networks have been widely adopted for the task of

encoding knowledge as semantics of visual behaviour [18,

23,38,39,46,47]. Alternatively, Ivanov and Bobick [26]

proposed to use stochastic grammar to describe high-level

behaviour. Their approach tried to learn grammars from

data rather than specifying them manually. What they did

have to specify were ‘atomic semantic units’. We consider

these atomic semantic units to be similar to our notion of

visual events. Instead of manual specification, attempts have

also been made to learn visual events as hidden Markov

states and their transition probabilities using either entropy

minimisation [5] or minimum description length [54].

In Section 3, we present a method for modelling the

semantics of visual behaviour for interpreting human

actions without relying on segmentation or object-centred

spatial trajectories. We wish to infer semantics of higher-

level behavioural patterns through monitoring visual events

captured directly at individual pixels. In Section 3.1, we

exploit dynamic scene models using adaptive Gaussian

mixtures to bootstrap the detection of visual events. A novel

approach is proposed in Section 3.2 for learning the

semantics of autonomous visual events in human actions

without segmentation. This is achieved by modelling the

temporal structures formed by the energy histories of pixel-

wise temporal change using CONDENSATION [2].

In Section 4, we present an approach for modelling the

semantics of interactive human behaviour for consistent

visual association of a moving head and two hands under

self-occlusion from a single camera view. Occlusion occurs

when a hand passes in front of the face or the other hand.

Hand association requires that the hands found in the current

frame be matched correctly to the left and right hands. Most

existing attempts based on a single camera cope with these

problems through temporal prediction which intrinsically

assumes temporal order and continuity in measured visual
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data. However, such an assumption is often invalid in real

environments. We redefine the problem of spatio-temporal

prediction as a problem of reasoning about body-part

associations based on modelling semantics of interactive

visual behaviour of a human body.

Experiments are provided in Section 5 to compare the

performance of a pixel-energy-history based event model to

that of an adaptive Gaussian mixture-based scene model,

similar to that proposed by Stauffer and Grimson [49], for

autonomous visual event detection. Experimental compari-

son of our inference-based interpreter with more commonly

adopted dynamical trackers is also presented. We demon-

strate that through iterative revision of hypotheses about

associations of hands with skin-coloured image regions,

such a semantics-based interpreter is able to recover from

almost any form of tracking loss. Conclusions are drawn in

Section 6.

3. Learning semantics for event detection without

segmentation

Multiple object segmentation and motion grouping under

occlusion cannot be achieved in general without semantics

of the underlying behaviours. This suggests that individual

trajectories of occluding multiple objects, which essentially

rely upon segmentation and grouping, should not be the

starting point for understanding their visual behaviours. We

consider that behaviours are not best defined by continuous

trajectories of object motion. Instead, behaviours are more

closely associated with temporally structured autonomous

visual events. The temporal structure of such visual events

may not necessarily be governed by strict first temporal

order (i.e. all past history is entirely captured by the

immediate previous state) dynamics and the kind of spatial

proximity typically captured by hidden Markov models. We

wish to model such autonomous visual events based on

pixel-wise information alone without any explicit attempt

for object segmentation or motion grouping.

3.1. Modelling dynamic pixels using adaptive Gaussian

mixtures

Let us examine more closely the nature of the pixel-

colour spectrums. Dynamic scenes exhibit a wide spectrum

of change both in terms of the speed and nature of the

change occurring in individual pixels. Short-term change is

mostly characterised by its temporal profile. On the other

hand, long-term change manifests itself over the predomi-

nant components of a pixel’s colour distribution. These

components can be caused by scintillating static objects in

the background or cyclically moving objects, and can be

modelled by Gaussian mixtures. More specifically, given a

stream of colour values for a given pixel, xt [ {x0; x1;…;
xl}; the variation in the ðr; g; bÞ components of xt can be

described in terms of Gaussian means m and co-variances S.

However, illumination specularities or swaying objects such

as moving tree leaves can cause the colour distributions of

pixels to split into multiple modes or clusters [44,49]. A

time adaptive Gaussian mixture model pðxtÞ ¼
Pk

i¼1 vic

ðxt;mi;SiÞ is an effective way to model the more complex

and irregular distributions, where vi represents the mixing

parameter (
P

i vi ¼ 1) and cð·Þ the Gaussian kernel. In

unconstrained environments, the colour distributions of

specific pixels rarely remain static. Changes in lighting

conditions or patterns of sway in the image cause slow shifts

in the parameters of a mixture model. First, we make these

parameters adaptive similar to the scheme proposed in [49].

New pixel values are approximated with Gaussian clusters

of pre-set co-variance according to the amount of noise and

illumination variance present in the particular capturing set-

up. Methods such as the EM algorithm are not viable for

computing mixtures for thousands of pixels in image

sequences over time [44]. Instead, the components are

adapted as follows:

(1) New observations xt which do not fit into any current

Gaussian, i.e. have a small enough Mahalanobis

distance, are assigned new Gaussians. A limit of kmax

is set for the dynamic set of Gaussians. Once the limit

is exceeded, the weakest Gaussian is replaced by the

new one.

(2) For each pixel xt; the closest Gaussian uc is selected to

be responsible for this pixel.

(3) The means and co-variances of Gaussian uc are

updated according to a pre-determined learning rate a :

muc;t ¼ ð1 2 aÞmt21 þ axt ð1Þ

Suc;t ¼ ð1 2 aÞSt21 þ aðxtx
T
t Þ ð2Þ

where 0 , a , 1:
(4) This learning rate is also applied to the mixing

parameter vu; also referred to as the weight, of each

Gaussian component u which is updated according to

whether the Gaussian is responsible for pixel xt at time

t:

vu;t ¼ ð1 2 aÞvu;t21 þ aMu;t ð3Þ

Mu;t ¼
1; if u is the responsible Gaussian

0; otherwise

(
ð4Þ

Xkmax

i

vi;t ¼ 1 ð5Þ

This is to promote the long-term over the short-term

changes in the distribution.

(5) A confidence factor T is used to identify pre-dominant

components from short-term components and given as

a ratio of predominant Gaussian components in the

distribution (between 0–1). The Gaussian components

are ordered according to the products of (a) their

weights, which reflect the amount of time each has
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been observed and (b) the inverse of their generalised

variances, in order to promote static objects with

smaller variances. The first b Gaussians which account

for a proportion T of the time are considered as the

background components:

b ¼ argmin
kmax

B

XB
i¼1

vi . T

( )
ð6Þ

Instead of simply using the Mahalanobis distance in a

thresholded binary classification as adopted in [49],

Bayes’ rule is used here to formulate the probability of

pixel values xt belonging to a pre-learned set of long-

term Gaussian component (Glong) as opposed to the

recent foreground components introduced into the

mixture:

PðGlonglxtÞ ¼

Xb

i¼1

pðxtli; tÞPði; tÞ

pðxtÞ
; ð7Þ

where,

pðxtli; tÞ ¼
Xb

i¼1

1

2p3=2lSi;tl
1=2

exp 2 1
2
ðxt 2 mi;tÞ

T ðSi;tÞ
21ðxt 2 mi;tÞ

� �
ð8Þ

Pði; tÞ ¼ vi;t ð9Þ

(6) In our case, we use kmax ¼ 6 so that the mixture model

mostly captures the static components responsible for

slow change and a few foreground components.

The predominant set of Gaussians in the mixture stores

the accumulated history of the frequency of observation of

each component in the mixture over a long-term scale. The

state of the set can therefore capture slow changes in the

colour distribution of pixels. Provided sufficient training

examples are available and depending on the surveillance

task, the predominant set can be locked so that new

Gaussians are reported as abnormal, e.g. the introduction of

a parcel in a busy scene. The long-term models can detect

non-fitting fast changes, to be modelled using pixel-energy-

histories as follows.

3.2. Learning temporal structures of pixel-energy-history

Rapidly changing visual phenomena exhibited by

animated objects typically involves both non-rigid defor-

mations [36] and purposeful trajectories [17,29,48]. Poor

object segmentation due to the lack of semantics makes it

difficult to associate frame-wise visual change to mean-

ingful scene events. However, the temporal history of

change in the appearance of pixel data itself provides useful

cues as to the type of event at a higher-level structure

occurring at such pixel loci. In particular, pixel-energy

information gives a measure of temporal change occurring

at a pixel over time. We consider that temporal structures of

pixel-energy histories define autonomous visual events at a

higher-level. It is important to point out that our notion of

computing temporal pixel-energy is not the same as

computing visual motion as adopted in [10,21]. Instead of

computing motion, our aim is to extract reliable temporal

change at individual pixels without attempting to establish

correspondence in its local neighbourhood. We then model

autonomous events through learning the temporal structures

of pixel-energy histories. This is to some extent reminiscent

of topic spotting in speech recognition.

Pixel-energy can be measured by quadrature filters [41].

We adopt the second order temporal derivatives, Laplacian

of Gaussian gðyÞ and its Hilbert transform hðyÞ phase-shifted

by 908, as a pair of quadrature filters of temporal size T for

Fig. 1. (a) Selected frames from a sequence containing 20 repetitions of left-right-left movement. (b) Pixel temporal energy extracted from every image frame

using a pair of quadrature filters (i.e. temporal size T ¼ 10). Energy magnitude is linearly encoded as grey-level where black represents high magnitude. A log-

scale has been applied to show small scale structures. Reflective edges can be seen in the image as black lines.
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extracting pixel-energy:

PhðxtÞ ¼

 XT
j¼0

g

 
3:5ðj2 TÞ

T

!
xt2j

!2

þ

 XT
j¼0

h

 
3:5ðj2 TÞ

T

!
xt2j

!2
ð10Þ

The filter masks gðyÞ and hðyÞ are, respectively, defined as:

gðyÞ ¼ hð2y2 2 1Þe2y2

; hðyÞ ¼ ky þ ly3e2y2

ð11Þ

where the normalising coefficients are h ¼ 0:9213; k ¼

22:205 and l ¼ 0:9780; as suggested in [12]. These

quadrature filters can be extended to multi-scales using

wavelets similar to those proposed [31]. Fig. 1 shows the

pixel-energy information from an example sequence of a

person walking-about in a room.

3.3. A model for detecting autonomous visual events

Fig. 2 shows pixel-energy histories of randomly selected

six different pixels from 20 repetitions of a typical walk-

about behaviour in an office environment captured by a

continuous video footage. The third column of Fig. 2 shows

the temporal structures corresponding to fast change

segments in the pixel-energy histories. They clearly show

to be both distinctive and repeated for each pixel. Adaptive

Gaussian mixtures for long-term pixel colour distributions

can be used to detect regions of slow change in pixel-energy

histories and therefore extract energy histories into discrete

pixel-events of ‘unexpected’ change. We adopt a supervised

approach for learning visual events by extracting temporal

structures of pixel-energy histories from a set of training

sequences of ‘normal’ behaviour patterns. Probabilistic

temporal structure models provide a mechanism for

matching new observations to the pre-learned pixel-

energy-history models [2,19,24,35]. Multiple hypotheses

are generated using the CONDENSATION algorithm [25]

to match a backward window from the signal against

template windows in the models. The propagation of

random samples allows for concurrent hypotheses to be

maintained while providing temporal and amplitude scaling

for signal-matching cross-correlation flexibility. Here we

use such a model for detecting visual events. More

Fig. 2. From left to right. (a) Sample frames from 20 repetitions of a typical walk-about behaviour in an office environment captured by a continuous video

footage. A black square dot is drawn in each frame to highlight the pixel whose history is displayed in the right column. (b) Distinctive and repeated temporal

energy histories of 6 different highlighted pixels in the image. Notice that the rate of repetition at a different pixel location is different. Grey segments indicate

fast change sections while black segments indicate slow change sections in the histories. (c) Duration and scale normalised fast change segments of the energy

histories from 6 different pixels.
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precisely, the matching hypotheses or states st are defined as

ðm;f;a; rÞ where m is the model being matched, f, the time

index within the model, a, the amplitude scaling parameter

and finally r, the temporal scaling parameter. A finite set of

k states are propagated over time according to the

observation probability, as follows:

PðytlstÞ ¼ exp 2
Xw21

j¼0

yt2j 2 am
m
ðf2rjÞ

� �2

2smðw 2 1Þ

8><
>:

9>=
>; ð12Þ

where sm is the standard deviation of model m [2]. States are

randomly chosen from a cumulative probability distribution

of the normalised observation likelihood of all the states in

the set. Then, states with observation likelihood higher than

a threshold of probable match (we use a 0.3 likelihood

confidence) are propagated to the next time step according

to:

mt ¼ mt21; ft ¼ ft21 þ rt21 þ N; at

¼ at21 þ N; rt ¼ rt21 þ N ð13Þ

where N is propagation noise of normal distribution.

In the absence of higher-level object models of shape or

appearance, the perceptual process of binding multiple-

pixel information together can be facilitated by using the

temporal synchrony of change in the pixels [51]. Visual

events usually affect multiple pixels in the image simul-

taneously. Irrespective of the type of visual change

occurring at the object level, the temporal energy of the

involved stream of pixels should exhibit strongly correlated

change, particularly in the time-delay between pixels.

Preserving a common time reference for each learned

pixel-energy-history model allows for cross-propagation of

hypotheses of synchronous change across pixels, i.e.

modelling co-occurrence. For modelling autonomous visual

events, we define a temporal cross-correlation function

through cross-propagation:

Co-occurrence dynamic. Given a pixel xt at time t, for all

the samples ðmt;ft;at; rtÞ satisfying a matching confi-

dence threshold, another pixel yt, with pixel-energy-

history model m0
t and model time index f0

t, corresponding

to ft is selected. A new sample (m0
t; f

0
t þ rt; at; rt) is

cross-propagated into pixel yt at the next time step with

similar amplitude and temporal scale as the original

sample.

A percentage of the states are reserved for random

initialisation and cross-propagation. The probability of the

change in a given pixel at time t matching the pre-learned

models of normal change is given as the best cross-

correlation observation probability over a set of k states:

PðytÞ ¼ max
k

i¼1
ðPðytlsi;tÞÞ ð14Þ

Unexpected patterns of pixel change are detected when the

likelihood of the change at a time instant matching pre-

learned ‘normal’ change falls below a threshold. The

likelihood threshold can be adjusted according to the

desired sensitivity of detecting ‘normal’ change versus

‘abnormal’ change.

For recognising visual events in a new image sequence,

this model propagates hypotheses of expected pixel-energy

histories (i.e. semantics) to match with pixel-energy

computed at each frame of the input sequence. Good

hypotheses generate cross-hypotheses in other pixels, which

have synchronous short-term fast change (i.e. co-occur-

rence). Events can therefore sustain adequate recognition by

pixels cross-propagating hypotheses to each other. The

model provides a solution for learning the binding process

of pixels into higher-level visual events without object-level

representation.

4. Modelling semantics of interactive human behaviours

Let us now consider the problem of modelling and

encoding the semantics of a human body configuration for

interpreting and tracking interactive behaviours. We are

concerned with the computational task of robust and

consistent association of multiple body parts in visually

mediated interaction using only a single 2D view without

depth information. In typical interactive behaviours, a

person’s hand, for example, can often move from rest to a

distance half the length of their body between one frame and

the next! Also, the hands may occupy regions as small as ten

pixels or less wide, giving poor and incomplete visual data.

Simultaneous and consistent association of erratic but

highly natural behaviour patterns involving multiple

occluding hands, arms and head is required.

The visual cues we have adopted for locating human

head and hands in interactive behaviours are skin colour,

image motion and hand orientation. Pixel-wise dynamic

background colour models have been shown in Section 3.1

to be a source of robust and inexpensive visual cue for

detecting visual events. Adaptive models of specific object

foreground colour such as skin provides additional cues for

locating and differentiating human head and hands [44,56].

Solving the problem of associating the correct hands (left or

right) over time also requires the use of spatial constraints.

However, situations arise under occlusion in which choos-

ing the nearest skin-coloured cluster to the previous hand

position results in incorrect hand assignment. Therefore the

problem cannot be solved purely using colour and motion

information. Without depth, we utilise the intensity image

of each hand to obtain a very coarse measurement of hand

orientation, which is robust even in very low-resolution

imagery. The restricted kinematics of the human body are

loosely modelled to exploit the fact that only certain hand

orientations are likely to occur at a given position in the

image relative to the head. The accumulation of a statistical

hand orientation model is illustrated in Fig. 3. Assuming
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that the subject is facing the camera, the image is divided

coarsely into a grid of histogram bins. We then artificially

synthesize a histogram of likely hand orientations for each

2D position of the hand in the image projection relative to

the head position. To do this, a 3D model of the human body

is used to exhaustively sample the range of possible arm

joint angles in upright posture [40]. Assuming that the hand

extends parallel to the forearm, the 2D projection is made to

obtain the appearance of hand orientation and position in the

image plane, and the corresponding histogram bin is

updated. We would like to point out that the objective

here is to establish, through learning, atemporal configura-

tional correlations between the 3D orientations of hands and

the corresponding 2D positions of both the head and hands

in the image space. Such cross-level configurational

knowledge aids the process of establishing object-centred

trajectories when objects (i.e. the head and both hands) are

constantly under occlusion and their motions are highly

erratic. Tracking is therefore aided by learned atemporal

correlations among different object features in both 2D and

3D. More precisely, during tracking, the quantised hand

orientation is obtained according to the maximum response

from a bank of oriented Gabor filters, and the tracked hand

position relative to the tracked head position is used to index

the histogram and obtain the likelihood of the hand

orientation given the position. Details of other computations

required for extracting the visual cues of human head and

hands can be found in [46].

4.1. Modelling the semantics of interactive behaviours using

Bayes Net

Given the visual cues described above, the problem is

now to correctly associate skin colour clusters to the left and

right hands. However, only discontinuous information is

available (see Fig. 4(a)). Under these conditions, explicit

modelling of body dynamics inevitably makes too strong an

assumption about image data. Instead, we address this

problem of hand association over time under constant

occlusion (i.e. discontinuity) through solving the problem of

interpreting temporally structured discrete visual events

using semantics. This requires full exploitation of both

visual cues and the semantics of interactive human

behaviour. For instance, we know that at any given time a

hand is either (1) associated with a skin colour cluster, or (2)

it occludes the face (and is therefore ‘invisible’ using only

skin colour) as in Figs 4(a) and (b), or (3) it has disappeared

from the image as in Fig. 4(d). When considering both

hands, the possibility arises that both hands are associated

with the same skin colour cluster, as when one clasps the

hands together for example, shown in Fig. 4(e).

A mechanism is required for modelling semantics and

reasoning about the visual cues. The obvious method of

incorporating semantics into the hand association problem

would be through a fixed set of rules. However there are two

unpleasantries associated with this approach: brittleness and

global lack of consistency. Hard rules are notoriously

sensitive to noise due to their dependencies on fixed

thresholds. A rule-based approach also suffers from global

consistency problems because commitment to a single

Fig. 3. Schematic diagram of the hand orientation histogram process.

Fig. 4. Examples of the difficulties in interpreting human body parts: (a)

motion is discontinuous between frames; (b) one hand occludes the face; (c)

both hands occlude the face; (d) a hand is invisible; (e) both hands occlude

each other.

S. Gong et al. / Image and Vision Computing 20 (2002) 873–888 879



decision precludes feedback of higher-level knowledge to

refine lower-level uncertain observations. As a result,

subsequent decision-making is isolated from the contending

unchosen possibilities.

An alternative approach to reasoning is based on soft,

probabilistic decisions. Under such a framework all

semantics are considered to some degree but with an

associated probability. Bayesian Belief Networks (BBNs)

provide a rigorous framework for combining semantic and

sensor-level reasoning under conditions of uncertainty

[9,11,43]. Given a set of variables1 W representing the

scenario, the assumption is that all our knowledge of the

current state of affairs is encoded in the joint distribution of

the variables conditioned on the existing evidence, PðwleÞ:
Explicit modelling of this distribution is unintuitive and

often infeasible. Instead, conditional independencies

between variables can be exploited to sparsely specify the

joint distribution in terms of more tangible conditional

distributions between variables.

A BBN is a directed acyclic graph that explicitly defines

the statistical (or ‘causal’) dependencies between all

variables.2 These dependencies are known a priori and

used to create the network architecture. Nodes in the

network represent random variables, while directed links

point from conditioning to dependent variables. For a link

between two variables, X ! Y, the distribution PðylxÞ in the

absence of evidence must be specified beforehand from

contextual knowledge. As evidence is presented to the

network over time through variable instantiation, a set of

beliefs are established to reflect both prior and observed

information:

BELðxÞ ¼ PðxleÞ ð15Þ

where BELðxÞ is the belief in the value of variable X given

the evidence e: A BBN can subsequently be used for

prediction and queries regarding values of single variables

given current evidence. However, if the most probable joint

configuration of several variables given the evidence is

required, then a process of belief revision3 (as opposed to

belief updating) must be applied to obtain the most probable

explanation of the evidence at hand, wp; defined by the

following criterion:

PðwpleÞ ¼ max
w

PðwleÞ ð16Þ

where w is any instantiation of the variables W consistent

with the evidence e; termed an explanation or extension of

e; and wp is the most probable explanation/extension. This

corresponds to the locally computed function expressing the

local belief in the extension:

BELpðxÞ ¼ max
w0

X

Pðx;w0
X leÞ ð17Þ

where W0
X ¼ W 2 X:

4.2. Interpreting visual events by inference

The BBN for modelling the semantics for interpreting

human head and hands in interactive behaviour is shown in

Fig. 5. Abbreviations are: LH ¼ left hand, RH ¼ right hand,

LS ¼ left shoulder, RS ¼ right shoulder, C1 ¼ skin cluster

1, C2 ¼ skin cluster 2. There are 29 variables, W ¼

{X0;X1;…;X28}: The first point to note is that some of the

variables are conceptual, namely X0; X1; X5 and X8; while

the remaining variables correspond to image-measurable

quantities, constituting e: All quantities in the network are or

have been transformed to discrete variables. The conditional

probability distributions attributed to each variable in the

network are specified beforehand using either domain

knowledge or statistical sampling. The total state space

size of the set of variables W is 9:521245 £ 1012; which is

the number of probabilities required to explicitly represent

PðWÞ: However, to populate the conditional and prior

probability tables of the network required specification of

only 456 probabilities, yet any query on the full joint

distribution can still be made.

At each time step, all of the measurement variables are

instantiated from observations. C1 and C2 refer to the two

largest skin clusters in the image (apart from the head).

Absence of clusters is handled by setting the variables X5

and X8 to have zero probability of being a hand. The

localised belief revision method is then employed until the

network stabilises and the most probable joint explanation

of the observations is obtained:

P wple
� �

¼ max
w

PðwleÞ ð18Þ

This yields the most likely joint values of X0 and X1; which

can be used to set the left and hand box position.

Note that the network structure is not singly

connected, due to undirected cycles formed through X0

and X1: Consequently the simple belief revision

algorithm of Pearl [43] cannot be used due to non-

convergence. Instead, we apply the more general

inference algorithm of Lauritzen and Spiegelhalter

[11,32]. This inference method transforms the network

to a join tree, each node of which contains a sub-set of

variables called a clique. The transformation to the join

tree needs to be performed only once off-line. Inference

then proceeds on the join tree via a message-passing

mechanism similar to the method proposed by Pearl.

The complexity of the propagation algorithm is

proportional to the span of the join tree and the largest

1 Upper-case is used to denote a random variable, lower-case to denote its

instantiation, and boldface is used to represent sets of variables. In the rest

of this section, W represents a set of random variables, whilst w represents a

particular instantiation of that set of variables. X represents a single random

variable, and x is a particular instantiation of that variable.
2 Therefore the statistical independencies are implicitly defined as well.
3 The difference between belief updating and belief revision comes about

because in general, the values for variables X and Y that maximise their joint

distribution are not the values that maximise their individual marginal

distributions.
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state space size amongst the cliques. The variables and

their dependencies are now explained as follows:

X0 and X1: the primary hypotheses regarding the left and

right hand positions respectively. These variables are

discrete with values {CLUSTER1, CLUSTER2, HEAD}

which represent skin cluster 1, skin cluster 2 and occlusion

of the head, respectively. Disappearance of the hands is not

modelled here for simplicity.

X2, X3, X10, X11 : the distance in pixels of the previous

left- or right-hand box position from the currently

hypothesized cluster. The dependency imposes a weak

spatio-temporal constraint that hands are more likely to

have moved a small distance than a large distance from one

frame to the next.

X20, X21, X22, X23 : the distance in pixels of the

hypothesized cluster from the left or right shoulder. The

shoulder position is estimated from the tracked head box.

This dependency specifies that the hypothesized cluster

should lie within a certain distance of the shoulder, given by

the length of the arm.

X26 and X27 : the distance in pixels of the previous left or

right hand box position from the current head box position.

A hand that was previously close to the current head

position may now be occluding the head.

X5; X12; X13; X14; X15; X8; X16; X17; X18; X19 : these

variables determine whether each cluster is a hand. X5 and

X8 are Boolean variables specifying whether or not their

respective clusters are hands or noise. The variables have an

obvious dependency on X0 and X1 : if either hand is a

cluster, then that cluster must be a hand. The descendants of

X5 and X8 provide evidence that the clusters are hands. X15

and X19 are the number of skin pixels in each cluster relative

to the head, which has some distribution depending on

whether or not the cluster is a hand. X14 and X18 are the

number of motion pixels in each cluster, expected to be high

if the cluster is a hand. Note that these values can still be

non-zero for non-hands due to shadows, highlights and

noise on skin-coloured background objects. X13 and X17 are

the aspect ratios of the clusters which will have a certain

distribution if the cluster is a hand, but no constraints if the

cluster is not a hand. X12 and X16 are the spatial areas of the

enclosing rectangles of the clusters. For hands, these values

have a distribution in terms relative to the size of the head

box, but for non-hands there are no expectations.

X6 and X7 : the number of moving pixels and number of

skin-coloured pixels in the head box respectively. If either

of the hands is hypothesized to occlude the head, we expect

more skin pixels and some motion.

X28 : the previously inferred judgment of whether the

head was occluded by a hand. This influences the judgment

of whether motion in the head region implies a hand is now

occluding or uncovering the head region.

X24 and X25 : the number of skin pixels in clusters 1 and 2

compared with a running average of observed skin pixel

counts in the hand clusters.

X4 and X9 : orientation of the respective hand, which

Fig. 5. A Bayesian Belief Network representing dependencies amongst variables in human body-parts configuration.
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depends to some extent on its spatial position in the screen

relative to the head box. This orientation is calculated for

each hypothesized hand position. The histogram described

early (shown in Fig. 3) is used to assign a conditional

probability table.

In this network, all of the visual cues can be considered

simultaneously and consistently to arrive at a most probable

explanation of both hands and the head. BBNs lend the

benefit of being able to ‘explain away’ evidence. For

example, if the belief that the right hand occludes the face

increases, this decreases the belief that the left hand also

occludes the face because it explains any motion of growth

in the number of skin pixels in the head region. This comes

about through the indirect coupling of the hypotheses X0 and

X1 and the fixed amount of probability attributable to any

single piece of evidence. Hence probabilities are consistent

and evidence is not ‘double counted’ [43].

5. Experiments

5.1. Learning semantics of visual events without object

segmentation

To illustrate our pixel pixel-energy-history based tem-

poral structure model for learning semantics of visual events

defined by behaviour patterns in a constantly changing

scene background, we designed a set of visual event

detection tasks purely based on pixel information alone

without any object segmentation and motion grouping.

Our model described in Section 3.2 was trained using

repeated image sequences of two different people carrying

out their normal routine of actions (behaviours) in an office

environment. These behaviours include (a) walking from

the door to the desk in the right corner of the room, (b)

walking-about in the room and (c) leaving the room by the

door (see examples in Fig. 6). The autonomous event model

was trained to learn pixel change caused by these expected

behaviour patterns in the scene based on 10 repetitions each

performed by 2 different people. The 20 training sequences

contained 1000 frames in total, approximately 50 frames per

sequence.

The model was tested on five different sequences of

behaviour patterns performed by three different people, one

of whom was not present during training. The testing

sequences contained similar actions to the training

sequences but with differences in the characteristics of the

performed movement as to add novel events to the

behaviour patterns. These visual events include:

(1) Slow down. The testing subject suddenly walked at a

slower speed for a short period of time while keeping to

the same trajectory of motion.

(2) Fast move. The testing subject suddenly walked at a

faster speed for a short period of time along the same

trajectory.

(3) Pause. The testing subject walked as usual except for a

brief pause in the middle of his walk-about activity.

(4) Jump. A quick jump was introduced in the middle of

the walk.

(5) Falling box. The scene contained a number of static

objects including a box on the floor. Whilst the

movement and changes to image background caused

by normal walk-about do not constitute an event, the

Table 1

Event detection results from applying the pixel-energy-history (PEH) based autonomous event model and an adaptive Gaussian mixture (AGM) based dynamic

scene model to 5 different test sequences totalling over 1700 image frames.

Visual events No. of event occurrence No. of image frames PEH-based detection AGM-based detection

Slow down 6 615 6 6

Fast move 6 255 6 6

Pause 6 362 5 0

Jump 6 356 4 0

Falling box 1 108 1 0

Fig. 6. Examples of training sequences illustrating a typical behaviour pattern in an indoor office environment consisting of three stages: (a) walking from the

door to the desk in the left corner of the room, (b) walking-about in the room and (c) walking back to the door and leaving.
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movement and background change caused by the box

falling over do.

Table 1 shows some results from both Pixel-Energy-

History (PEH) based and Adaptive Gaussian Mixture

(AGM) based event recognition. Both models were able to

successfully detect both slow down and fast move events in

most image frames (see examples in Fig. 7). However, the

PEH-based autonomous event model performs differently

on sequences containing pause and jump events as shown in

Figs. 8 and 9. In the two example sequences shown most of

the frames containing movement of normal walk-about

behaviour. Two pause and jump events occurred only briefly

in the sequences and were detected by the PEH-based

autonomous event model. The process implicitly invoking

higher-level scene semantics learned from individual pixel-

energy histories. The AGM-based dynamic scene model did

not model any knowledge of context, it detected all the

movement as expected and could not differentiate between

movement and visual events. In Fig. 10, the movement

caused by the walking person did not constitute any event,

whilst the image change caused by the falling box did. Both

the PEH and the AGM models detected the occurrence of

the falling box but the latter could not differentiate such an

event from all other movement caused by the walking

person.

These experiments suggest that higher-level scene

semantics can be learned indirectly by learning the normal

temporal structures of individual pixel-energy histories

without the need for object segmentation and motion

grouping. Such a temporal structure model has shown to

be able to differentiate some primitive visual events from

merely visual movement and background scene change

caused by expected behaviour patterns in a given scene.

5.2. On modelling semantics for human hands association

To evaluate the performance of modelling semantics

using a BBN for human hands association in natural

interactive behaviours, we compare the performance of our

BBN based model with two dynamical tracking methods.

Note that to make our point about the difficulty of

Fig. 7. Detecting the slow down event. (a) Image frames, (b) adaptive

Gaussian mixture (AGM) model output, (c) pixel-energy-history (PEH)

model output.

Fig. 8. Detecting the pause event.

Fig. 9. Detecting the jump event.
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discontinuous motion more compelling, we captured all

video data at a relatively high frame rate of 18 fps and used

off-line processing.

First, we show some results from applying a BBN based

semantics model to perform hands movement association.

Example frames from four different video sequences

consisting of 141– 367 frames per sequence are shown in

Fig. 11. Each sub-figure shows frames from one sequence

temporally ordered from left to right, top to bottom. It is

important to note that the frames are not consecutive. In

each image a box frames the head and each of the two hands.

The hand boxes are labelled left and right, showing the

correct assignments. In the first example, Fig. 11(a), the

hands were accurately interpreted before, during and after

mutual occlusion. In Fig. 11(b), typical coughing and nose-

scratching movements bring about occlusion of the head by

a single hand. In this sequence the two frames marked with

‘A’ are adjacent frames, exhibiting the significant motion

discontinuity that was encountered. Nevertheless the BBN

semantics model was able to correctly interpret the hands. In

Fig. 11(c) the subject undergoes significant whole body

motion to ensure that the model works while the head is

constantly moving. With the hands alternately occluding

each other and the face in a tumbling action, the model is

still able to correctly interpret the body parts. In the third-to-

last frame both hands simultaneously occlude the face. The

example of Fig. 11(d) has the subject partially leaving the

screen twice to fetch and then offer a book. Note that in

the frames marked ‘M’ one hand is not visible in the image.

Since, this case is not explicitly modelled by the BBN

semantics model, occlusion with the head or the other hand

is deduced. After these periods of disappearance, the hand is

once again correctly interpreted.

Second, we compared the atemporal semantics-based

interpreter experimentally with three other dynamics-based

tracking methods:

Dynamical: assuming temporal continuity exists between

frames over time and linear dynamics, this method uses

Kalman filters for each body part to match boxes at the

pixel level between frames.

Non-contextual: similar to the semantics-based method,

this method assumes temporal continuity but does not

attempt to model the dynamics of the body parts. The

method matches skin clusters based only on spatial

association without the use of high-level knowledge.

CONDENSATION-based: based on the approach taken

in [33], this method uses CONDENSATION with

simple dynamics to track the hands simultaneously as

a joint state, and employs an exclusion principle for

the case of occlusion. More details can be found in

[45].

It is difficult to compare the tracking methods fairly in

this context. Comparison of the average deviation from the

true hand and head positions would be misleading because

Fig. 10. Detecting the falling box event.

Table 2

Comparative results of the four tracking methods. Computation times are

shown for a PII-330 MHz and are approximate.

Method Incorrect frames Time per frame (ms)

Number %

Semantics-based 439 13 200

CONDENSATION-based 602 18 24,100

Dynamical 728 22 40

Non-contextual 995 30 50
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of the all-or-nothing nature of matching to discrete clusters.

Another possible criterion is the number of frames until

loss-of-track, but this is somewhat unfair since a tracker

may lose lock at the start of the sequence and then regain it

and perform well for the rest of the sequence. The criterion

we chose for comparison is the total number of frames on

which at least one body part was incorrectly tracked, or the

hands were mismatched. The comparison was performed on

Fig. 11. Examples of discontinuous motion tracking.

S. Gong et al. / Image and Vision Computing 20 (2002) 873–888 885



14 sequences containing two different people totalling 3300

frames.

Table 2 shows the number of frames incorrectly tracked

by each method, in absolute terms and as a percentage of the

total number of frames, and the approximate computation

time per frame in milliseconds on a Pentium II 330 MHz

computer. The semantics-based interpreter performs sig-

nificantly better than the other methods, even though the

data was captured at a high frame rate. Therefore, the

benefits of modelling semantics rather than temporal

continuity for performing association of visual observation

of hands under discontinuous motion are significant. One

would expect even better improvements if only low frame-

rate data were available. The most common failure modes

for the non-contextual-based, CONDENSATION-based

and dynamical-based trackers were incorrect assignment

of the left and right hands to clusters, and locking on to

background noise when one hand was occluded. The

dynamics-based tracker often failed due to inaccurate

temporal prediction of the hand position. Two examples

of this failure are shown in consecutive frames in Fig. 12.

Although one could use more sophisticated dynamical

models, it is still very unlikely they will ever be able to

feasibly capture the full gamut of human behaviour, let alone

accurately predict under heavily discontinuous motion. For

example, the body-parts tracker in [58] switches in

appropriate high-level models of behaviour for improved

tracking, but the computational cost increases with the

number of possible behaviours modelled.

Regarding computational cost, the table shows that the

CONDENSATION-based method is two orders of magni-

tude more expensive than the semantics-based method. The

enormous increase in computational expense was mainly

due to the re-use of observations in statistical sampling, in

particular the local hand orientations, which require an

expensive filtering operation. This highlights the important

computational advantage of the Bayesian network

approach: an enormous state space can be fully modelled

using efficient computation, while the resources required for

particle filtering methods such as CONDENSATION grow

exponentially with the state space size and are largely out of

the designer’s control.

6. Conclusion

Modelling behaviours and recognising events often

require object-level representations to interpret visual

data. However, object segmentation and trajectory extrac-

tion rely upon spatial proximity (region-growing) and

temporally constrained ‘blob’ correlations (linear or

second-order dynamics) respectively. Using such assump-

tions to interpret complex visual phenomena in busy scenes

might not be sufficient. Indeed, it is questionable how much

an automated system can learn and perceive objects from

single image frames without pre-learned object models.

We described an approach to learning semantics of scene

context in order to interpret novel visual events without

object segmentation and motion grouping. Pixel-energy

histories provide a condensed variable-length representation

of temporal fast change in single pixels. Our experiments

show that they can be used to semantically discriminate

motion caused by different types of scene background

change and detect events of significance without segmenta-

tion and grouping. We have also used adaptive Gaussian

Mixture Models to separately model and recognise slow

change such as illumination cycles under a less computa-

tionally taxing framework. The ambiguity inherent in

viewing a complex world through a single pixel has been

addressed by incorporating the modelling of synchronous

change in multiple pixels during events (i.e. co-occurrence)

Fig. 12. Two examples of the failure of the dynamic Kalman filter tracker.
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to perform pixel-stream hypotheses and matching of fast

change.

Visual observations of human body motion from

interactive behaviour can often be jerky and discontinuous.

Semantics of the underlying behaviour and context can be

used to overcome ambiguities and uncertainties in measure-

ment. We presented a method to model the semantics of

human body configuration using Bayesian belief networks.

The model is used to perform robust human body parts

association under discontinuous motion from a single 2D

view. Rather than modelling spatio-temporal dynamics, the

problem of visual tracking is addressed by reasoning about

the observations using a semantics-based inference model.

This semantics-based interpreter was tested and compared

with more traditional dynamical and non-contextual track-

ers. The results indicate that modelling semantics signifi-

cantly improves the robustness and consistency of tracking

and associating visual observations under uncertainty and

discontinuity.
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