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Abstract

In this paper, we propose a sequential approach to hallu-
cinate/synthesize high-resolution images of multiple facial
expressions. We propose an idea of multi-resolution tensor
for super-resolution, and decompose facial expression im-
ages into small local patches. We build a multi-resolution
patch tensor across different facial expressions. By unify-
ing the identity parameters and learning the subspace map-
pings across different resolutions and expressions, we sim-
plify the facial expression hallucination as a problem of pa-
rameter recovery in a patch tensor space. We further add
a high-frequency component residue using nonparametric
patch learning from high-resolution training data. We in-
tegrate the sequential statistical modelling into a Bayesian
framework, so that given any low-resolution facial image of
a single expression, we are able to synthesize multiple facial
expression images in high-resolution. We show promising
experimental results from both facial expression database
and live video sequences.

1. Introduction

Automatic facial expression analysis requires effective
and robust image representation that can capture sufficiently
discriminative details about facial muscle changes. Many
modelling approaches have been introduced which no mat-
ter holistically or locally, rely on regions of interest convey-
ing rich deformation information, and perform feature ex-
traction around salient eyelids, eyebrows, mouth, and their
appearance. In particular, Facial Action Coding System
(FACS) defines 44 muscular action units to decribe the fa-
cial motion and deformation with regard to location and in-
tensity [10, 9], whilst Active Appearance Models (AAM)
select and label manually salient local landmark points on
facial regions [12, 13]. However, the accuracy and robust-
ness of an expression model suffer dramatically when the
resolutions of facial expression image becomes low. This
becomes a particular problem when facial expression im-
ages are captured at median to long distance away from the

camera or when a subject face is not the sole focus of the
camera view .

Super-resolution is a technique [15, 17, 19, 18] to gen-
erate high-resolution images given a single or set of low-
resolution input images. Super-resolution can be performed
using either reconstruction-based [6, 7, 8, 11] or learning-
based [16, 14, 15, 17, 19, 21] approaches. In particular,
Capel and Zisserman [17] divided human face into six un-
related parts and applied PCA on them separately. Com-
bined with MAP estimator, they can recover the result from
a high-resolution eigenface space. Baker and Kanade [14]
attempted to establish the prior based on a set of training
face images pixel by pixel using Gaussian, Laplacian and
feature pyramids. Freeman and Pasztor [16] tried to re-
cover the lost high-frequency information from low-level
image primitives by representing images using Markov net-
work parameters obtained from a training data set. Liu
and Shum [19] combined the PCA model-based approach
and Freeman’s image primitive technique to form a mixture
model of “global face image” carrying common facial prop-
erties and “local feature image” recording local individual-
ities. Jia and Gong [5] developed a multi-modal face im-
age super-resolution and recognition system across different
views and illuminations. They constructed two training ten-
sors in high- and low-resolution separately, and performed
multiple face image super-resolutions by the inferrence of
high-resolution tensor identity parameter vectors.

However, none of the existing approaches addressed the
problem of super-resolving and generalising facial images
undergoing non-linear deformation, such as across differ-
ent facial expressions. To this end, we propose in this pa-
per a sequential approach to hallucinate/synthesize high-
resolution images of multiple facial expressions. We pro-
pose an idea of multi-resolution tensor for super-resolution,
and decompose facial expression images into small local
patches. We build a multi-resolution patch tensor across
different facial expressions. By unifying the identity para-
meters and learning the subspace mappings across different
resolutions and expressions, we simplify the facial expres-
sion hallucination as a problem of parameter recovery in a
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patch tensor space. We further add a high-frequency com-
ponent residue using nonparametric patch learning from
high-resolution training data. We integrate a sequential sta-
tistical modelling into a Bayesian framework, so that given
any low-resolution facial image of a single expression, we
are able to synthesize multiple facial expression images in
high-resolution. We show promising experimental results
from both facial expression databases and live video se-
quences.

The paper is organized as follows. Section 2 introduces
an idea of multi-resolution tensor for super-resolution, and
formulates a multi-resolution patch tensor model of multi-
ple facial expressions. In section 3 we derive a Bayesian
framework which integrates our sequential process of facial
expression hallucination. Section 4 presents experimental
results before conclusions are drawn in Section 5.

2. Modelling Facial Expression Images Using
Multi-Resolution Patch Tensor

Super-resolution requires a suitable model for generat-
ing high-resolution images given a single or set of low-
resolution images. Multilinear (tensor) analysis provides
an effective approach to model the multiple factor interac-
tions of an image ensemble. Motivated by the combination
of these two ideas, in this section we introduce a concept
of multi-resolution tensor, and its effective usage when ap-
plied on super-resolution. We further extend this idea to
facial expression hallucination. Overall, we uniformly de-
compose the multi-resolution facial expression images into
small overlapped patches, and then group these patch pixels
of different positions, expressions and resolutions as an em-
semble. We construct a multi-resolution patch tensor which
later is used for multiple facial expression hallucination.
Before presenting how to model facial expression images
using multi-resolution patch tensor, let us first briefly intro-
duce some properties of tensor algebra.

2.1. Multilinear Analysis: Tensor SVD

Multilinear analysis [2, 4, 3, 1] is a general exten-
sion of the traditional linear methods such as PCA or
matrix SVD. Instead of modelling relations within vec-
tors or matrices, multilinear analysis provides a means to
investigate the mappings between multiple factor spaces.
In the following, we denote scalars by lower-case letters
(a, b, . . . ;α, β, . . . ), vectors by upper-case (A,B, . . . ), ma-
trices by bold upper-case (A,B, . . . ), and tensors by calli-
graphic letters (A,B, . . . ).

Given an N th-order tensor A ∈ RI1×I2···×IN , an ele-
ment of A is denoted as Ai1...in...iN

or ai1...in...iN
, where

1 ≤ in ≤ In. If we refer to In rank in tensor terminol-
ogy, we generalize the matrix definition and call column
vectors of matrices as mode-1 vectors and row vectors of

matrices as mode-2 vectors. The mode-n vectors of the
N th order tensor are the In-dimensional vectors obtained
from A by varying index in while keeping the other in-
dices fixed. We can unfold or flatten the tensor A by tak-
ing the mode-n vectors as the column vectors of matrix
A(n) ∈ RIn×(I1I2...In−1In+1...IN ). These tensor unfoldings
provide an easy manipulation in tensor algebra and if nec-
essary, we can reconstruct the tensor by an inverse process
of mode-n unfolding.

We can generalize the product of two matrices to the
product of a tensor and a matrix. The mode-n prod-
uct of a tensor A ∈ RI1×I2×···×In×···×IN by a matrix
M ∈ RJn×In ,denoted by A ×n M, is a tensor B ∈
RI1×···×In−1×Jn×In+1×···×IN whose entries are computed
by

(A×nM)i1...in−1jnin+1...iN
=

∑
in

ai1...in−1inin+1...iN
mjnin

.

This mode-n product of tensor and matrix can be expressed
in terms of unfolding matrices for ease of usage,

B(n) = MA(n). (1)

Given the tensor A ∈ RI1×I2···×IN and the matrices F ∈
RJn×In and G ∈ RJm×Im , the following property holds
true in tensor algebra [3, 4]:

(A×n F) ×m G = (A×m G) ×n F = A×n F ×m G.

In singular value decompositions of matrices, a matrix
D is decomposed as U1ΣUT

2 , the product of an orthogonal
column space represented by the left matrix U1 ∈ RI1×J1 ,
a diagonal singular value matrix Σ ∈ RJ1×J2 , and an or-
thogonal row space represented by the right matrix U2 ∈
RI2×J2 . This matrix product can also be written in terms of
mode-n product as D = Σ ×1 U1 ×2 U2. We can gener-
alize the SVD of matrices to multilinear higher-order SVD
(HOSVD). An N th-order tensor A ∈ RI1×I2×···×IN can be
written as the product

A = Z ×1 U1 ×2 U2 × · · · ×N UN , (2)

where Un is a unitary matrix, and Z is the core tensor hav-
ing the property of all-orthogonality, that is, two subtensors
Zin=α and Zin=β are orthogonal for all possible values of
n, α and β subject to α �= β. The HOSVD of a given tensor
A can be computed as follows. The mode-n singular ma-
trix Un can directly be found as the left singular matrix of
the mode-n matrix unfolding of A, afterwards, based on the
product of tensor and matrix as in Eq.(1), the core tensor Z
can be computed by

Z = A×1 UT
1 ×2 UT

2 · · · ×N UT
N .
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Eq.(2) gives the basic representation of multilinear
model. If we investigate the mode-n unfolding and folding,
and rearrange Eq.(2), we can have

S = B ×n V T
n , (3)

where S is a subtensor of A corresponding to a fixed row
vector V T

n of the singular matrix Un, and

B = Z ×1 U1 · · · ×n−1 Un−1 ×n+1 Un+1 · · · ×N UN .

This expression is the basis for recovering original data
from tensor structure. If we index into basis tensor B for
more particular V T

n , we can get different modal sample vec-
tor data.

2.2. Multi-Resolution Tensor for Super-Resolution

A tensor structure provides a powerful mechanism to in-
corporate the information and interaction of image ensem-
bles with different resolutions. Benefiting from the map-
ping relations of multiple factor spaces inherently embed-
ded in the tensor structure, we can recover higher resolution
images given any corresponding lower resolution images.
More precisely, given a training dataset of high-resolution
images, of which they bear some common properties of
pixel distributions, as shared by all human faces. We blur
and sub-sample these high-resoluiton images with different
Gaussian filters and sub-sampling factors, while keeping
the image size unchanged. We then obtain a hierarchical
ensemble containing images of multiple resolutions. With
these training images in place, we construct a tensor struc-
ture and use HOSVD to decompose them. The decomposed
model can be expressed as

D = Z ×1 Uidens ×2 Uresos ×3 Upixels,

where tensor D groups these training images of multiple
resolutions into a tensor structure, and the core tensor Z
governs the interactions between the 3 mode factors. The
mode matrix Uidens spans the parameter space of identities
for these training images, the mode matrix Uresos spans
the parameter space of different resolutions, and the mode
matrix Upixels spanning space of image pixels.

With the constructed tensor of these training images of
multiple resolutions, we can perform super-resolution in a
tensor parameter vector space. Based on the tensor theories
in section 2.1, specifically as suggested in Eq.(3), the image
data of different resolutions can be recovered given their
single identity parameter vector in tensor space. In such a
formulation of super-resolution, this single identity parame-
ter vector can be computed by projecting testing resolution
images onto the multi-resolution tensor.

More precisely, suppose we have a basis tensor

B = Z ×2 Uresos ×3 Upixels, (4)

we can index into this basis tensor at a particular resolution
r to yield a basis subtensor

Br = Z ×3 Upixels ×2 V T
r .

Then the subtensor containing the individual image data can
be expressed as

Dr = Br ×1 V T + Er, (5)

where V T represents the single identity parameter row vec-
tor and Er stands for the tensor modelling error for reso-
lution r. For ease of notation and readability, we will use
the mode-1 unfolding matrix to represent tensors. Then the
matrix representation of Eq.(5) becomes

D(1)
r = V T B(1)

r + er. (6)

Eq.(6) provides a possible solution for the single identity
parameter vector V T . Applied it on other resolution r′, the
corresponding resolution image data can be computed as

D(1)
r′ = V T B(1)

r′ + er′ . (7)

We have to emphasize that as noted in Eq.(6) and Eq.(7),
the modelling errors er and er′ may seriously deteriorate
the recovered image quality of different resolutions. To
overcome this problem, we build this multi-resolution ten-
sor based on decomposed small patches as follows.

2.3. Modelling Facial Expression Images

Traditional facial expression modelling approaches seg-
ment and rely on regions of interest conveying rich defor-
mation information, and perform feature extraction around
salient areas. These heuristic segmentation of facial re-
gions restricts the accuracy and stability of facial expression
analysis. In this paper, we decompose the facial expression
images into small overlapped patches uniformly, and per-
form analysis and modelling on patch scale without consid-
eration of heuristic locating and segmenting.

After patch decomposition, we apply the above proposed
multi-resolution tensor on patch level, which provides a
model for capturing the variations of facial expression im-
ages. Then a new tensor structure can be given as

D = Z×1Uidens×2Uexps×3Uresos×4Upatches×5Upixels,
(8)

where mode matrix Uexps spans the parameter space of
different facial expressions, and the mode matrix Upatches

spans the parameter space of overlapped patches. An illus-
tration of this construction process is given in Fig. 1. Simi-
larly as deduced in section 2.2, by unified identity parameter
vector for different expressions and patch positions, we can
recover the image pixel data on all the decomposed patches,
and on each of them for multiple facial expressions.
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Figure 1. Multiple facial expression images of different resolutions are decomposed into small overlapped patches in (d), on which multi-
resolution patch tensor can be constructed.

3. A Sequential Process for Facial Expression
Hallucination

The tensor recovery is optimal in minimizing the global
mean square error. However, this will lose the highest fre-
quency information of image data. The tensor modelling er-
ror in Eq.(7) may also make the recovered image deviating
from the original truth. To compensate for this deviation,
based on tensor recovered images, we add nonparametric
local patch updating by learning from high-resolution train-
ing data, and present a sequential process to obtain the
middle- and high-frequency information in two steps.

Suppose that H1,H2, ...,HS are the high-resolution im-
ages to be recovered for different facial expressions, and L1

is the low-resolution input of one facial expression. Our
probem of multiple facial expression hallucination can be
formulated into a Bayesian framework. The task comes
as finding the Maximum A Posterior (MAP) estimation of
H1,H2, ...,HS given L1. We take the case of two expres-
sion hallucination as an example, which can be formulated
as

{H1MAP ,H2MAP } = arg max
H1,H2

log P (H1,H2|L1). (9)

By applying the Bayes rule, the probability P (H1,H2|L1)
becomes

P (H1,H2|L1) = P (H1|L1,H2)P (H2|L1). (10)

The given low-resolution input L1 observes the basic imag-
ing observation model, and the estimation of its correspond-
ing high-resolution image H1 is independent of other ex-

pressions, we then rewrite the above as

P (H1|L1,H2)P (H2|L1) = P (L1|H1)P (H1)P (H2).
(11)

Assuming Hm represents facial expression images contain-
ing low- and middle-frequency part information, and Hh

containing information of high-frequency part, the high-
resolution image is naturally a composition of them,

H = Hm + Hh. (12)

Since Hm contributes the main part of L after blurring and
sub-sampling, and P (H) is equal to P (Hh|Hm)P (Hm),
we reformulate the MAP problem of Eq.(9) resulting in

P (L1|H1)P (H1)P (H2) = P (L1|Hm
1 )P (Hh

1 |Hm
1 )

P (Hh
2 |Hm

2 )P (Hm
1 )P (Hm

2 ).
(13)

Based on Eq.(12) and (13), the MAP inference problem of
Eq.(9) can be finally formulated as

{H1MAP ,H2MAP }
= arg max

H1,Hm
1 ,H2,Hm

2

log
(
P (L1|Hm

1 )P (Hm
1 )P (Hm

2 )

P (H1|Hm
1 )P (H2|Hm

2 )
)

(14)

The probabilities P (L1|Hm
1 )P (Hm

1 )P (Hm
2 ) and

P (H1|Hm
1 )P (H2|Hm

2 ) sequentially constrain Hm
1 ,Hm

2

and H1,H2 in Eq.(14). This leads to a two-step sequential
solution. In the first step, by using a multi-resolution patch
tensor, we can recover the Hm for different facial expres-
sions. After obtaining Hm

1 ,Hm
2 , the final high-resolution
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H1,H2 can be computed in a second step by maximizing
P (H1|Hm

1 )P (H2|Hm
2 ).

3.1. Middle-Frequency Component Recovery Using
Multi-Resolution Patch Tensor

Due to the orthogonality of tensor decompostion [5], the
prior constraint P (Hm

1 )P (Hm
2 ) can be ignored in Eq.(14).

We decompose the facial expression images into small over-
lapped patches, and the inference of images Hm containing
middle-frenquency part is carried on a patch level. We fac-
torize the likelihood P (L1|Hm

1 ) onto patch level and it be-
comes

P (L1|Hm
1 ) =

N∏
p=1

P (L1p|Hm
1p)

Assuming A is the blurring and sub-sampling operator con-
necting L1p and Hm

1p in a imaging observation model, we
regard these processes as Gaussian therefore

P (L1|Hm
1 ) =

N∏
p=1

1
Z

exp{−‖AHm
1p − L1p‖2/λ}, (15)

where Z is a normalization constant and λ scales the vari-
ance.

Eq.(8) shows our multi-resolution patch tensor structure
incorporarting multiple facial expressions, of which sup-
pose we have a basis tensor

B = Z ×2 Uexps ×3 Uresos ×4 Upatches ×5 Upixels,

we index into this basis tensor at particular expression e,
resolution r and patch position p, yielding a basis subtensor

Be,r,p = Z ×5 Upixels ×2 V T
e ×3 V T

r ×4 V T
p .

Then the subtensor containing the pixel data for that partic-
ular patch can be approximated as De,r,p = Be,r,p ×1 V T .
We unfold it into matrix representation and it becomes
D(1)T

e,r,p = B(1)T
e,r,p · V . Similarly we can obtain a subten-

sor for resolution r′ of the same facial expression and patch
postion, which is D(1)T

e,r′,p = B(1)T
e,r′,p · Ṽ . Suppose D(1)T

e,r,p

and D(1)T
e,r′,p correspond to the L1p and Hm

1p respectively, we
replace them in Eq.(15) resulting in

P (L1|Hm
1 ) =

N∏
p=1

1
Z

exp{−‖AB(1)T
e,r′,p·Ṽ −B(1)T

e,r,p·V ‖2/λ}.

(16)
We optimize the paramter Ṽ based on the constructing
properties of our multi-resolution patch tensor, which sug-
gest that the relation between B(1)T

e,r′,p and B(1)T
e,r,p observes

a basic imaging observation model. In reality, this is
consistent with the uniqueness of the identity parame-
ter vector in a tensor space. By setting Ṽ = V , we

can approximately compute Hm
1p as Hm

1p = B(1)T
e,r′,pΨL1p

where Ψ is the pseudoinverse of B(1)T
e,r,p and is equal to

(B(1)
e,r,pB

(1)T
e,r,p)−1B(1)T

e,r,p. By choosing different e = s and
p = n, we have the general equation for patch recovering
of multiple facial expressions at different patch positions,
which is formulated as

Hm
sn = B(1)T

s,r′,nΨL1n. (17)

After reconstructing all the patches at different positions for
multiple facial expressions, the final higher resolution facial
expression images are simply composition of their corre-
sponding overlapped small patches.

3.2. High-Frequency Residue Recovery Using Non-
parametric Patch Learning

Facial expression images recovered by multi-resolution
patch tensor contain the low- and middle-frequency infor-
mation, we then compensate for the highest frequency part
by patch learning from the high-resolution training data.
The inference of H1,H2 from Hm

1 ,Hm
2 is independent. In

the following we take H1 as example to illustrate how to
hallucinate the final high-resolution facial expression im-
ages.

We use Markov Random Field (MRF) to model the H1

to be inferred. By decomposing Hm
1 into square patches,

we have

P (H1|Hm
1 ) = P (Hm

1 |H1)P (H1) =
M∏

q=1

P (Hm
1q|H1q)P (H1).

The difference between H1 and Hm
1 is the high-frequency

band information. Since the high-frequency information de-
pends on the lower-frequency band, we define the Lapla-
cian image LHm

1
of Hm

1 , which in fact represents the mid-
dle frequency band image. To infer H1, we use the sum
of squared differences on Laplacain images as metrics, and
model

∏M
q=1 P (Hm

1q|H1q) as

M∏
q=1

P (Hm
1q|H1q) ∝ −

M∏
q=1

‖LHm
1q

− L
H

(i)
1q
‖2,

where L
H

(i)
1q

are the Laplacian images from high-resolution

training facial expression images. Compare the Laplacian
images LHm

1q
with {L

H
(i)
1q
}k

i=1 from the training dataset, the

patch H
(i)
1q with L

H
(i)
1q

closest to LHm
1q

is most probable to

be chosen as H1q . Since we model the high-resolution im-
ages as MRF, based on the Hammersley-Clifford theorem,
P (H1) is a product

∏
H1q,H1q

Φ(H1q,H1q) of compatibil-
ity functions Φ(H1q,H1q) over all neighboring pairs, where
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H1q,H1q are the neighboring patch pair, and the compati-
bility functions are measured using differences of pixel val-
ues. Then finally H1 is estimated as

arg max
H1

M∏
q=1

P (Hm
1q|H1q)

∏
(q,q)

Φ(H1q,H1q). (18)

Similiar procedures can be independently repeated for es-
timations of other high-resolution facial expression images
Hs.

Solving probabilistic Eq.(18) is not a trivial task to ob-
tain H1. We use the Iterated Conditional Modes (ICM)
algorithm [20] for this purpose. The pseudo code for our
algorithm of multiple facial expression hallucination is as
follows.

Algorithm 1: Algorithm for multiple facial expression
hallucination

input : single low-resolution image L1

output: multiple facial expression images Hs,
s = 1, . . . , S

Step I:
for different expression e = s and patch position
p = n do

Hm
s ←− Hm

sn = B(1)T
s,r′,nΨL1n

end
Step II:
repeat

for any expression s, pick a random patch location
q;
Hs ←−
arg maxHs

∏M
q=1 P (Hm

sq |Hsq)
∏

(q,q) Φ(Hsq,Hsq)
until Hsconverges;

4. Experiments

We tested our facial expression hallucination approach
on both a benchmark facial expression database and live
surveillant video sequences. For simulated experiments,
we chose the benchmark AR face database. Original AR
dataset has 126 people, and for each individual it includes
images of different facial expressions, illumination condi-
tions and occlusions. We chose expression images of neu-
tral, smile, anger and scream for testing our approach of
multiple facial expression hallucination. To establish a stan-
dard training dataset, we used facial image size of 64×48,
and aligned them manually by hand marking the location of
3 points: the centers of the eyeballs and the lower tip of the
nose. These 3 points define an affine warp, which was used
to warp the images into a canonical form.

For all the 504 (126×4) high-resolution facial expres-
sion images in the training dataset, we blurred and sub-
sampled them to obtain low-resolution versions of these im-
ages. For each experiment, we decomposed every facial

expression image into 336 small 4×4 patches which over-
lapped horizontally and vertically with each other by 1 pixel
(the patch size and overlapping size were experimentally
decided). We chose the 8 high- and low-resolution facial
expression images of 125 individuals to build up a train-
ing multi-resolution patch tensor, and one low-resolution
expression image of the remaining person as the test in-
put. After obtaining the hallucinated results using the multi-
resolution patch tensor (Step I), for resulting images of dif-
ferent facial expressions, we performed the nonparametric
patch learning from the corresponding high-resolution ex-
pression images of the 125 training individuals (Step II).
We experimentally chose the patch size of 6×6 to iteratively
update them. Some of the example results are shown as in
Fig.2.

Fig.2 shows that any hallucinated result with the same
facial expression as the low-resolution input in column (a)
is always better than those with other expressions, which
is natually an expense of generating nonlinear variations
across different facial expressions. Also in Fig.2, compara-
tive investigations of column (g) with column (k), and col-
umn(i) with column(m) suggest that, the hallucinated smile
and scream images have no identical muscle changes com-
pared to their ground truth expressions. However, the mus-
cle change intensities of these facial expressions have been
successfully synthesized.

For testing the robustness of our approach when ap-
plied on real data, we captured video sequences from a cor-
ridor surveillant camera, and selected frames where low-
resolution human faces existed. We cropped out the faces as
testing input for hallucinating multiple facial expression im-
ages. The high-resolution training facial expression images
from the AR database, and the multi-resolution patch ten-
sor constructed from them were used in this process. Fig.3
demonstrates the illustration examples.

In the live sequence experiments, we have no ground
truth images which could be collected, to verify the likeness
of hallucinated results. But the synthesized multiple high-
resolution facial expression images do demonstrate the ro-
bustness of our approach. As suggested in Fig.3, the quality
of these synthesized images is as good if not better than as
those in simulated experiments.

5. Conclusion

In summary, we propose a novel idea of multi-resolution
tensor for super-resolution, and present a sequential ap-
proach to hallucinate/synthesize high-resolution images of
multiple facial expressions. We decompose facial expres-
sion images into small patches, and build a multi-resolution
patch tensor across different facial expressions. By unify-
ing the identity parameters and learning the subspace map-
pings across different resolutions and expressions, we sim-
plify the facial expression hallucination as a problem of pa-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)
Figure 2. Examples from simulated experiments on multiple facial expression hallucination: (a) Low-resolution input images (16×12)
of different expressions (obtained by downsampling original testing input images). (b)-(e) The first step hallucination results (Eq.(17))
(64×48) with expressions of neutral, smile, anger and scream respectively, using multi-resolution patch tensor. (f)-(i) The second step hal-
lucination results (Eq.(18)) with the 4 expressions, using nonparametric patch learning. (j)-(m) Ground truth facial images of corresponding
expresssions.

rameter recovery in a patch tensor space. We further add
a high-frequency component residue using nonparametric
patch learning from high-resolution training data. We in-
tegrate the sequential statistical modelling into a Bayesian
framework. Given any low-resolution facial image of sin-
gle expression, we are able to super-resolve multiple facial
expression images in high-resolution. Experiments on both
simulated database and live video data verify our method.
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