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Abstract. Visual identification of an individual in a crowded environ-
ment observed by a distributed camera network is critical to a variety of
tasks including commercial space management, border control, and crime
prevention. Automatic re-identification of a human from public space
CCTV video is challenging due to spatiotemporal visual feature varia-
tions and strong visual similarity in people’s appearance, compounded by
low-resolution and poor quality video data. Relying on re-identification
using a probe image is limiting, as a linguistic description of an individ-
ual’s profile may often be the only available cues. In this work, we show
how mid-level semantic attributes can be used synergistically with low-
level features for both identification and re-identification. Specifically, we
learn an attribute-centric representation to describe people, and a met-
ric for comparing attribute profiles to disambiguate individuals. This
differs from existing approaches to re-identification which rely purely on
bottom-up statistics of low-level features: it allows improved robustness
to view and lighting; and can be used for identification as well as re-
identification. Experiments demonstrate the flexibility and effectiveness
of our approach compared to existing feature representations when ap-
plied to benchmark datasets.

1 Introduction

Person re-identification, or inter-camera entity association, is the task of recog-
nising an individual in diverse scenes obtained from non-overlapping cameras.
In particular, for long-term people monitoring over space and time, when an
individual disappears from one view they need be differentiated from numerous
possible targets and re-identified in another view, potentially under a different
viewing angle and lighting condition and subject to variable degrees of occlusion.

Relying on manual re-identification in large camera networks is prohibitively
costly and inaccurate. Operators are often assigned more cameras to monitor
than is optimal and manual matching can also be prone to attentive gaps [1].
Moreover, human performance is subjectively determined by individual opera-
tor’s experience therefore is often difficult to transfer and also subject to operator
bias [2]. For these reasons, there has been extensive work in the computer vision
community on automated re-identification. These efforts have primarily focused
on developing feature representations which are discriminative yet invariant to
view angle and lighting [3], and improved learning methods to better discriminate
identity [4]. Nevertheless, despite extensive research, automated re-identification
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is still a largely unsolved problem. This is due to the underlying challenge that
most features are still either insufficiently discriminative for cross-view entity as-
sociation, especially with low resolution images, or insufficiently robust to view
angle and lighting changes.

Contemporary approaches to re-identification typically exploit low-level fea-
tures [5, 6, 3], because they can be relatively easily measured. In this paper,
we take inspiration from the operating procedures of human experts [7–9], and
recent research in attribute learning [10] to introduce a new class of mid-level at-
tribute features. When performing person re-identification, human experts seek
and rely upon matching appearance or functional attributes that are unam-
biguous in interpretation, such as hair-style, shoe-type or clothing-style [7].
This attribute-centric representation is also used when a description is provided
verbally (e.g., by an eye-witness) to an operator. We term this process attribute-
profile identification, or zero-shot re-identification. Many of these mid-level
attributes can be measured reasonably reliably with modern computer-vision
techniques. This provides both a mechanism for attribute-profile identification
as well as a valuable new class of features for re-identification. Crucially, at-
tributes and low-level features provide very different types of information – ef-
fectively separate modalities. We will show how, with appropriate data fusion,
attributes and low-level features can provide powerful re-identification as well as
attribute-profile identification capabilities.

1.1 Related Work and Contributions

Re-identification. Contemporary approaches to re-identification typically ex-
ploit low-level features such as colour, texture, spatial structure [3], or combina-
tions thereof [6, 11]. Once a suitable representation has been obtained, nearest-
neighbour [3] or learning-based matching algorithms such as ranking [6] may
be used for re-identification. In each case, a distance metric (e.g., Euclidean or
Bhattacharyya) must be chosen to measure the similarity between two samples.
It is also be possible to discriminatively optimise the distance metric [4]. Other
complementary aspects of the problem have also been pursued to improve per-
formance, such as improving robustness by combining multiple frames worth of
features along a tracklet [11] and learning the topology or activity correllations
of the camera network [12] to cut down the matching space.

Attributes. Attribute based modelling has recently been exploited to good effect
in object [10] and action [13] recognition. To put this in context, in contrast to
low-level features, or high-level classes / identities, attributes are the mid-level
description of a class or instance. There are various unsupervised (e.g., PCA or
topic-models) or supervised (e.g., neural network) modelling approaches which
produce data-driven mid-level representations. These techniques aim to project
the data onto a basis set defined by the assumptions of the particular model (e.g.,
maximisation of variance, likelihood, or sparsity). In contrast, attribute learning
focuses on representing data instances by projecting them onto a basis set defined
by domain-specific axes which are semantically meaningful to humans.
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Semantic attribute representations have various benefits: (i) If data is sparse
(as in re-identification, which can be seen as one-shot learning) they can be
more powerful than low level features [10, 14, 13] because they provide a form of
transfer learning since attributes can be learned from a larger dataset apriori; (ii)
they can be used in conjunction with raw data for greater effectiveness [13] and
(iii) they are a suitable representation for direct human interaction, therefore
allowing searches to be specified or constrained by attributes [10, 14, 15].

Attributes in Identification and Surveillance. One view of attributes is as a
type of transferrable context [16] in that they provide auxiliary information
about an instance to aid in (re)-identification. Here they are related to the study
of soft-biometrics, which aims to enhance biometric identification performance
with ancillary information [17, 18]. Alternatively they can be used for semantic
attribute-profile identification (zero-shot learning [10]) in which early research
has aimed to retrieve people matching a verbal attribute description from a
camera network [8]. However, this has so far only been illustrated on relatively
simple data with a small set of equally-reliable facial attributes. We will illustrate

that one of the central issues for exploiting attributes for general automated
(re)-identification is dealing with their unequal and variable informativeness and
reliability of measurement from raw data.

Contributions. In this paper, we move towards leveraging semantic mid-level at-
tributes for automated person identification and re-identification. Specifically, we
make four main contributions: (i) We introduce and evaluate an ontology of useful
attributes which can be relatively easily measured using computer vision meth-
ods from the set of attributes used by human experts . (ii) We show how to learn
an attribute-space distance metric to leverage attributes for re-identification. (iii)
We evaluate the resulting approach and improve state of the art re-identification
performance on standard benchmark datasets. (iv) We show how attributes and
raw-data can also be used together for zero-shot re-identification.

2 Quantifying Attributes for Re-identification

In this section, we first describe our space of defined attributes (Section 2.1),
then how to train detectors for each attribute (Section 2.2). Finally, we show how
to learn a distance-metric for attribute space, and fuse these attributes with raw
low-level features for re-identification (Section 2.3).

2.1 Attributes

Based on the operational procedures of human experts [7], we define the following
space of Na = 15 binary attributes for our study: shorts, skirt, sandals, backpack,
jeans, logo, v-neck, open-outerwear, stripes, sunglasses, headphones, long-hair,
short-hair, gender, carrying-object. Twelve of these are related to attire, and
three are soft biometrics. Figure 1 shows an example of each attribute1.

1 We provide our annotations here: http://www.eecs.qmul.ac.uk/~rlayne/

http://www.eecs.qmul.ac.uk/~rlayne/
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Fig. 1. Example positive images for each attribute in our ontology. From left to right:
shorts, sandals, backpack, open-outerwear, sunglasses, skirt, carrying-object, v-neck,
stripes, gender, headphones, short-hair, long-hair, logo, jeans.

2.2 Attribute Detection

Low-level Feature Extraction. To detect attributes, we first extract an 2784-
dimensional low-level colour and texture feature vector denoted x from each
person image I following the method in [6]. This consists of 464-dimensional
feature vectors extracted from six equal sized horizontal strips from the image.
Each strip uses 8 colour channels (RGB, HSV and YCbCr) and 21 texture filters
(Gabor, Schmid) derived from the luminance channel. We use the same param-
eter choices for γ, λ, θ and σ2 as [6] for Gabor filter extraction, and for τ and σ
for Schmid extraction. Finally, we use a bin size of 16 to describe each channel.

We train Support Vector Machines (SVM) to detect attributes.
We use Maji et al.’s implementation [19] of LIBSVM and investigate Linear,

RBF, χ2 and Intersection kernels. We select the Intersection kernel as it compares
closely with χ2 but can be trained much faster For each attribute, we perform
cross validation to select SVM slack parameter C from C ∈ [−10, 5]. SVM scores
are probability mapped, so each attribute detector i outputs a posterior p(ai|x).

Attribute Training and Representation. The prevalence of each attribute (e.g.,
jeans, sunglasses) varies dramatically so some attributes have a limited number
of positive examples. To avoid bias due to imbalanced data, we train each at-
tribute detector with all the positive examples, and obtain a matching number
of negative examples by regularly subsampling the rest of the data.

Given the learned bank of attribute detectors, any person image can now be
represented in a semantic attribute space by stacking the posteriors from each at-
tribute detector into a Na dimensional vector: A(x) = [p(a1|x), . . . , p(aNa |x)]T .

2.3 Re-identification

Model and Fusion. In order to use our attributes for re-identification, we choose a
base re-identification method, and investigate how attributes can be fused to en-
hance performance. In particular we choose to build on Symmetry-Driven Accu-
mulation of Local Features (SDALF), introduced by Farenzena et al. [3]. SDALF
provides a low-level feature and Nearest Neighbour (NN) matching strategy giv-
ing state-of-the-art performance for a non-learning NN approach, and can be
fused with additional sources of information.
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Farenzena et al. introduces a state of the art distance metric dSDALF to
compare person images Ip and Iq. Within this nearest neighbour strategy, we
can integrate our attribute-based distance dATTR as follows:

d(Ip, Iq) = (1 − βATTR)· dSDALF (SDALF (Ip), SDALF (Iq)) (1)

+ βATTR· dATTR(ATTR(Ip), ATTR(Iq)). (2)

Here Eq. (1) corresponds the SDALF distance and Eq. (2) fuses our attribute-
based distance metric. For our attribute representation, we will learn a Maha-
lanobis L2 distance metric dATTR, detailed next.

Attribute Metric Learning. Since attributes are unequal due to variability in
number of training samples, how reliably they are measured, and how informative
they are, we need to decide how to weight the attributes. To address this, we
exploit the information theoretic distance metric learning strategy from [20]. We
define the distance (Eq. (2)) between attribute profiles A(x) as the following
Mahalanobis distance, paramaterized by positive definite matrix Λ:

dATTR(Ip, Iq;Λ) = (A(xp)−A(xq))
T
Λ (A(xp)−A(xq)) . (3)

A distance metric paramaterized by Λ can be represented by the corresponding
multi-variate Gaussian p(x;Λ, μ) ∝ exp(−dΛ(x, μ)/2). The Kullback-Leibler di-
vergence KLD(Λ||Λ) between two such Gaussians thus provides a well-founded
measure of the similarity between two Mahalanobis distance metrics. Building
on this measure of similarity between distance metrics, choosing a distance met-
ric to optimise the separability of person images via attributes can be expressed
via the following large-margin constraint satisfaction problem [20]:

min
Λ

KLD (p(x;Λ0)||p(x;Λ)) s.t. (4)

dA(xi,xj) ≤ u if (i, j) ∈ S,

dA(xi,xj) ≥ l if (i, j) ∈ D,

where Λ0 is a regulariser representing a simple identity-matrix metric, (i, j) ∈ S
indicates instances i and j are images of the same person, and (i, j) ∈ D indicates
images of different people. The matrix Λ obtained by optimising Eq. (4) provides
the optimal distance metric via Eq. (3) and hence Eq. (1).

2.4 Attribute-Profile Identification / Zero-Shot Re-identification

In addition to re-identification based on a probe image, we can also directly
identify a person given solely their semantic attribute description (aka zero-shot
learning [10] or attribute search [8]). Given an attribute description in the form
of a binary vector a, we can attempt to find this person by NN matching a
against the attribute profiles A(xi) of each person i in the dataset.

Surprisingly, in a multi-camera context, we can also use raw-data to improve
attribute-profile identification [21]. The intuition is if searching for a given profile
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a in view A, we also can use the match from another view B (or multiple matches
from A if available) to obtain an estimated appearance/low level feature x̂ as
additional context. This then provides an additional source of information from
view B which can be used together with a in the full framework (Eq. (1)). Of
course the matching within view B is imperfect, so we take x̂ as x̂ = 1

K

∑
l x

B
a,l,

averaging over the top K matches xB
a,l to prototype a in view B.

3 Experiments and Discussion

Datasets We select three challenging datasets with which to validate our model,
VIPeR [5], i-LIDS pedestrians [22] and ETHZ [23]. VIPeR contains 632 pedes-
trian image pairs from two cameras with different viewpoint, pose and lighting.
Images are scaled to 128x48 pixels. We follow [5, 3] in considering Cam B as the
gallery set and Cam A as the probe set. Performance is evaluated by matching
each test image in Cam A against the Cam B gallery. i-LIDS [22] contains 479
images of 119 pedestrians captured from non-overlapping cameras observing a
busy airport hall. In addition to pose and illumination variations, images are
also subject to occlusion. Images are scaled to 128x64 pixels. We follow [3] in
randomly selecting one image for each pedestrian to build a gallery, while the
others form the probe set, averaging results over 10 trials. ETHZ was developed
using a mobile camera and contains high variations in person appearance; but
low pose variation. As in [3], images are normalised to 64x32 pixels and we test
on Seq. 1 only which consists of 83 persons with 4,857 detections. Since the
number of people here is too small to split separate metric training and testing
sets we report figures for vanilla attributes instead.

Conditions. For each dataset, we select a portion for training, while re-
identification performance is reported on the held out test portion. There are two
phases to training: attribute detector learning (Section 2.2) and attribute dis-
tance metric learning (Section 2.3). Because VIPeR contains the largest amount
of data, and the most diversity in attributes, we train the attribute detectors
for all experiments on this dataset. This is important because it highlights the
value of attributes as a source of transferrable information [16].

For the metric learning, we learned on the training portion of each dataset.
We quantify re-identification performance in the standard way [5, 3]: recognition
rate is visualised with Cumulative Matching Characteristic (CMC) curves, which
indicate the probability of the correct match appearing in the top n.

We compare the following re-identification methods: SDALF [3] using code
provided by the authors (note that SDALF is already shown to decisively out-
perform [24]); Attr vanilla attribute based re-identification (euclidean distance);
AccMI attribute based re-identification with a weighting given by product of
accuracy and mutual information with identity [25]; MLA attribute based-
reidentification with discriminatively learned distance metric; SDALF+MLA
SDALF fused with MLA (weight βATTR determined by optimisation on training
set).
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Fig. 2. (a) Most people are uniquely identifiable by attributes. (b). VIPeR re-
indentification with perfect attribute classifiers (p=632). (c) Attribute search / zero-
shot re-identification (p=168).

Table 1. Attribute Detection Performance

Attribute Abs Mean Attribute Abs Mean Attribute Abs Mean

shorts 0.79 0.74 sandals 0.64 0.58 backpacks 0.66 0.52
jeans 0.76 0.73 carrying 0.75 0.50 logo 0.59 0.58
vnecks 0.44 0.53 openouter 0.64 0.56 stripes 0.41 0.47

sunglasses 0.66 0.60 headphones 0.74 0.58 shorthair 0.52 0.52
longhair 0.65 0.55 male 0.68 0.68 skirt 0.67 0.76

3.1 Attribute Analysis

We first analyse the potential of our attribute ontology with regards to the VIPeR
dataset. Fig. 2(a) shows a histogram of the number of individuals against degree
of attribute profile uniqueness or ambiguity. Clearly the majority of people can
be uniquely or almost uniquely identified by their profile, while there are a small
number of people with a very generic profile. The CMC curve (for gallery size
p=632) that would be obtained assuming perfect attribute classifiers is shown
in Fig. 2(b). This impressive result highlights the potential for attribute-based
re-identification. Also shown are the results with top 5 or 10 attributes (sorted
by mutual information with identity), and a random 10 attributes. This shows
that: (i) as few as 10 attributes are sufficient if they are good (high MI) and
perfectly detectable, while 5 is too few; and (ii) attributes with high MI are
significantly more useful than low MI (always present or absent) attributes.

Attribute Detection. Attribute detection in VIPeR achieves an average accuracy
of 64%, with 11 detectors performing greater than 60% (Table 1). This highlights
the issue of inequality of attributes and the importance learning a good distance
metric to focus on the most reliable and discriminative attributes.

Zero-shot identification. We next evaluate the novel task of identification based
solely on the manual attribute profile of a target (instead of the standard re-
identification approach of providing a probe image) using VIPeR. This corre-
sponds to the task of identifying an individual in a surveilled space based on
an, e.g. radioed, textual description of their attributes. This is challenging both
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Fig. 3. Averaged CMC curves for (a) VIPeR (gallery size p = 250), (b) iLIDS (gallery
size p = 60) and (c) ETHZ1 (gallery size p = 80)

.

(a) VIPeR (b) i-LIDS

Fig. 4. Examples where MLA (green) increases the re-id rank of the correct match vs
SDALF (red)

because of profile ambiguity (Fig. 2(a)) and limited accuracy of the attribute de-
tectors (Table 1). Performing zero-shot identification enhanced with data from
other camera (Section 2.4), we raise the CMC nAUC from 67% to 68% and
double the Rank 1 match rate from 2% to 4% (Fig. 2(c)).

3.2 Re-identification

Quantitative Evaluation The re-identification performance of all models is
summarised in Figure 3 and Table 2. In each case, optimisation with of
the distance metric improves re-identification over vanilla attributes (MLA vs
Attr). Optimised attributes in conjunction SDALF outperforms vanilla SDALF
(SDALF+MLA vs SDALF). Importantly, at the most valuable low rank r = 1
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Table 2. Breakdown of re-identification rates at specified ranks, and area under CMC

Attr MLA SDALF SDALF+MLA Attr MLA SDALF SDALF+Attr
ILIDS R1 15.42 10.75 51.33 52.92 ETHZ1 R1 32.92 35.27 75.86 75.86

R5 43.83 43.58 75.75 77.42 R5 53.73 55.90 88.82 88.82
R10 56.42 60.75 82.58 87.75 R10 63.43 65.64 92.77 92.77
R25 76.25 83.50 96.00 97.17 R25 78.27 79.70 96.76 96.78

nAUC 77.42 80.58 92.96 93.73 nAUC 83.64 84.48 96.84 96.93
Attr MLA SDALF SDALF+MLA AccMI

VIPER R1 5.40 5.06 18.02 18.78 6.40
R5 15.80 19.24 37.38 40.94 15.86
R10 24.34 29.06 49.38 54.94 26.02
R25 44.94 48.06 68.44 74.28 46.86

nAUC 80.72 82.90 86.56 90.15 81.00

(perfect match), SDALF has re-identification rates of 18.0%, 51.3% and 75.9%
while our full method has rates of 18.8%, 52.9% and 76% (for VIPeR, iLIDS and
ETH respectively; gallery size p = 250, p = 60, p = 80). We note that a simpler
attribute weighting baseline based on accuracy and mutual information with
identity (AccMI,[25]) does not improve much on vanilla unweighted attributes.
Moreover, this method requires ground-truth for attributes (so we can only test
it on VIPeR), which is not a limitation shared by our approach.

Some examples of re-identification using MLA and SDALF are shown in Fig-
ure 4 (a) and (b) for VIPeR and i-LIDS respectively. These illustrate how at-
tributes can complement low-level features. In the first examples for VIPeR and
iLIDS the detectors for backpacks and carrying respectively push the true match
up the rankings compared to SDALF.

4 Conclusions

We have shown how state-of-the-art low-level feature representations for auto-
mated re-identification can be further improved by taking advantage of a mid-
level attribute representation reflecting semantic cues used by human experts [7].
Existing approaches to re-identification [3, 6, 5] focus on high-dimensional low-
level features which are assumed invariant to view and lighting. However, their
simple nature and invariance also limits their discriminative power for identity.
In contrast, attributes provide a low-dimensional mid-level representation which
makes no invariance assumptions (Variability in appearance of each attribute
is learned by the classifier). Importantly, although individual attributes vary
in robustness and informativeness, attributes provide a strong cue for identity.
Their low-dimensional nature means they are also amenable to discriminatively
learning a good full-covariance distance metric in order to take into account
inter-attribute correlations. In developing a separate cue-modality, our approach
is potentially complementary to most existing approaches, whether focused on
low-level features [3], or learning methods [4].

The proposed attribute-centric model provides an important contribution and
novel research direction for practical re-identification: by providing a complemen-
tary and informative mid-level cue, as well as opening up new applications such
as zero-shot identification within the same framework. As a novel application,



Towards Person Identification and Re-identification with Attributes 411

consider how semantic attributes could potentially be used to constrain or re-
lax re-identification, for example by specifying invariance to whether or not the
target has removed or added a hat.

The most promising direction for future research is improving the attribute-
detector performance, as evidenced by the excellent results in Fig. 2(b) using
ground-truth attributes. The more limited empirical performance is due to lack
of training data, which could be addressed by transfer learning to bring attribute
detectors trained on large databases (e.g., web-crawls) to re-identification.

Acknowledgements. Ryan Layne is supported by a EPSRC CASE studentship
supported by UK MOD SA/SD. The authors also wish to thank Toby Nortcliffe
of the Home Office CAST for insights on human expertise.

References

1. Keval, H.: CCTV Control Room Collaboration and Communication: Does it Work?
In: Proceedings of Human Centred Technology Workshop, pp. 11–12 (2006)

2. Williams, D.: Effective CCTV and the challenge of constructing legitimate suspi-
cion using remote visual images. Journal of Investigative Psychology and Offender
Profiling 4(2), 97–107 (2007)

3. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-
identification by symmetry-driven accumulation of local features. In: Computer
Vision and Pattern Recognition (2010)

4. Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative
distance comparison. In: Computer Vision and Pattern Recognition (2011)

5. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reac-
quisition, and tracking. In: Performance Evaluation of Tracking and Surveillance
(2007)

6. Prosser, B., Zheng, W.S., Gong, S., Xiang, T.: Person Re-Identification by Support
Vector Ranking. In: British Machine Vision Conference, pp. 21.1–21.11 (2010)

7. Nortcliffe, T.: People Analysis CCTV Investigator Handbook. Home Office Centre
of Applied Science and Technology (2011)

8. Vaquero, D.A., Feris, R.S., Tran, D., Brown, L., Hampapur, A., Turk, M.:
Attribute-based people search in surveillance environments. In: Workshop on the
Applications of Computer Vision, pp. 1–8 (2009)

9. Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L.: Custom Pictorial Structures
for Re-identification. In: British Machine Vision Conference (2011)

10. Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes
by between-class attribute transfer. In: Computer Vision and Pattern Recognition
(2009)

11. Bazzani, L., Cristani, M., Perina, A., Farenzena, M., Murino, V.: Multiple-shot
Person Re-identification by HPE signature. In: International Conference on Pattern
Recognition, pp. 1413–1416 (2010)

12. Loy, C.C., Xiang, T., Gong, S.: Time-Delayed Correlation Analysis for Multi-
Camera Activity Understanding. International Journal of Computer Vision 90(1),
106–129 (2010)

13. Liu, J., Kuipers, B.: Recognizing human actions by attributes. In: CVPR (2011)



412 R. Layne, T.M. Hospedales, and S. Gong

14. Siddiquie, B., Feris, R.S., Davis, L.S.: Image ranking and retrieval based on multi-
attribute queries. In: Computer Vision and Pattern Recognition (2011)

15. Kumar, N., Berg, A., Belhumeur, P.: Describable visual attributes for face veri-
fication and image search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(10), 1962–1977 (2011)

16. Zheng, W.S., Gong, S., Xiang, T.: Quantifying and Transferring Contextual Infor-
mation in Object Detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence 1(8), 1–14 (2011)

17. Jain, A.K., Dass, S.: Soft biometric traits for personal recognition systems. In:
Biometric Authentication, pp. 1–7 (2004)

18. Dantcheva, A., Velardo, C., D’Angelo, A., Dugelay, J.L.: Bag of soft biometrics for
person identification. Multimedia Tools and Applications 51(2), 739–777 (2010)

19. Maji, S., Berkeley, U.C., Berg, A.C.A., Malik, J.: Classification using intersec-
tion kernel support vector machines is efficient. In: Computer Vision and Pattern
Recognition (2008)

20. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-Theoretic Metric
Learning. In: International Conference on Machine Learning (2007)

21. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Attribute Learning for Understand-
ing Unstructured Social Activity. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato,
Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 521–534. Springer,
Heidelberg (2012)

22. Zheng, W.S., Gong, S., Xiang, T.: Associating Groups of People. In: British Ma-
chine Vision Conference (2009)

23. Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models
using partial least squares. In: Brazilian Symposium on Computer Graphics and
Image Processing (2009)

24. Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble
of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008,
Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)

25. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. In: International Conference on Machine Learning (1997)


	Towards Person Identification and Re-identification with Attributes
	Introduction
	Related Work and Contributions

	Quantifying Attributes for Re-identification
	Attributes
	Attribute Detection
	Re-identification
	Attribute-Profile Identification / Zero-Shot Re-identification

	Experiments and Discussion
	Attribute Analysis
	Re-identification

	Conclusions
	References




