
SEMI-SUPERVISED FEW-SHOT LEARNING WITH PSEUDO LABEL REFINEMENT

Pan Li, Guile Wu, Shaogang Gong and Xu Lan∗

Queen Mary University of London
{pan.li, guile.wu, s.gong, x.lan}@qmul.ac.uk

ABSTRACT

Few-shot classification aims at recognising novel categories
with very limited labelled samples. Although substantial
achievements have been obtained, few-shot classification re-
mains challenging due to the scarcity of labelled examples.
Recent studies resort to leveraging unlabelled data to expand
the training set using pseudo labelling, but this strategy of-
ten yields significant label noise. In this work, we introduce
a new baseline method for semi-supervised few-shot learning
by iterative pseudo label refinement to reduce noise. Then,
we investigate the label noise propagation problem and im-
prove the baseline with a denoising network to learn distri-
butions of clean and noisy pseudo-labelled examples via a
mixture model. This helps to estimate confidence values of
pseudo labelled examples and to select the reliable ones with
less noise for iteratively refining a few-shot classifier. Exten-
sive experiments on three widely used benchmarks, miniIma-
genet, tieredImagenet and CIFAR-FS, show the superiority of
the proposed methods over the state-of-the-art methods.

Index Terms— Semi-Supervised Few-Shot Learning,
Pseudo Label Refinement, Mixture Model

1. INTRODUCTION

Few-shot classification is a challenging task aiming at recog-
nising novel classes with limited labelled data. Conventional
deep neural networks often fail in this task because they con-
tain lots of model parameters which lead to overfitting to the
scarce labelled data. To solve this problem, many few-shot
learning solutions have been proposed recently [1, 2, 3, 4]. A
general pipeline is training a recognition model with sufficient
labelled data from base categories and then fine-tuning a new
classifier for novel categories. However, due to the scarcity
of labelled examples from new classes, traditional few-shot
classification methods usually yield inferior performance.

To alleviate this drawback, some studies [5, 6, 7] resort
to semi-supervised few-shot learning (SS-FSL) by leveraging
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(a) Ground truth (label noise: 0.0%) (b) PL (pseudo label noise: 40.2% )

(c) PLAIN (pseudo label noise: 32.6%) (d) PLAIN++ (pseudo label noise: 14.2%)

Fig. 1. Visualisation of embeddings of 5-way 1-shot tasks
with 100 unlabelled data per class on miniImagenet. (a)
shows distributions of support exemplars and unlabelled data
with ground truth labels, whilst (b), (c), (d) show distributions
of support exemplars and unlabelled data with pseudo labels
estimated by pseudo-labelling (PL), PLAIN and PLAIN++.
Round points, stars and black crosses represent unlabelled
data, support exemplars and misclassified points, respectively.

additional unlabelled data from novel classes. Contemporary
SS-FSL approaches mainly follow a meta-learning pipeline
and use pseudo label estimation (e.g. soft k-means clustering
with masking [5], label propagation [6] and self-training with
hard and soft pseudo labels [7]) to leverage both scarce la-
belled data and abundant unlabelled data for learning a meta-
learner. However, these methods require to mimic SS-FSL
tasks during meta-training and meta-testing stages, result-
ing in sophisticated episodic learning processes and poor ex-
tension ability. On the other hand, recent study [8] adopts
a transfer-learning pipeline by pre-training a feature extrac-
tor, imprinting classifier weights for novel classes and up-
dating the model with an off-the-self semi-supervised learn-
ing method. But such a simple combination with off-the-self
semi-supervised methods without careful adjustments usually
results in sub-optimal performance for SS-FSL.

In this work, we introduce a simple baseline method for
SS-FSL by modifying a transfer-learning framework with
Pseudo LAbel refINement (PLAIN). Pseudo labelling [9] is
one of the key techniques for assigning labels of unlabelled
samples in novel classes. A common practice is to estimate
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Fig. 2. The overall framework of PLAIN and PLAIN++ for semi-supervised few-shot learning. The baseline method PLAIN
consists of (a), (b) and (c-1), while PLAIN++ contains (a), (b) and (c-2).

pseudo labels for unlabelled data with an initial classifier and
then update the classifier with pseudo labelled data. How-
ever, this approach is usually affected by noisy pseudo la-
bels, leading to inaccurate prediction (e.g. blue points in Fig. 1
(b)). Thus, in this work, we develop a method called PLAIN
for SS-FSL by integrating iterative self-training with reliable
pseudo-label selection into a transfer learning framework. As
shown in Fig. 2 (a), (b) and (c-1), we pre-train a feature ex-
tractor, fine-tune a cosine similarity based recognition model
with classification weights for novel classes, and then itera-
tively refine pseudo labels to learn a classifier without elab-
orately sampling meta tasks or adopting off-the-self semi-
supervised learning methods. This baseline method is simple
but can effectively refine reliable pseudo labels (e.g. red and
blue points in Fig. 1 (c)) for learning a few-shot classifier.

Given that pseudo labels are iteratively updated using a
fixed feature extractor in PLAIN, it is inevitable that noisy
pseudo labels produced by the bias of the feature extractor
will be easily amplified in the refinement process, causing
the label noise propagation problem [10]. To further ad-
dress this problem, we improve PLAIN with a denoising net-
work to reduce pseudo label noise via adapting knowledge on
novel classes and a Gaussian Mixture Model (GMM) to learn
distributions of clean and noisy pseudo-labels for obtaining
reliable pseudo-labelled instances, resulting in an advanced
SS-FSL method called PLAIN++. As shown in Fig. 2 (c-2),
compared with PLAIN, PLAIN++ requires to train a denois-
ing network using pseudo labelled examples with high confi-
dence. We use this denoising network to evaluate confidence
values of pseudo labels with GMM, which models distribu-
tions of clean and noisy pseudo labelled examples, so that we
can select η percentage of pseudo labels to update the few-
shot classifier. This process is alternately performed until the
pre-defined number of iterations. Thus, PLAIN++ can help to
estimate the confidence values of pseudo labelled examples
and alleviate pseudo label noise (e.g. Fig. 1 (d)) by pseudo-
labelled examples selection in each iterative step.

Our contributions are: (1) We introduce a simple yet ef-
fective baseline (PLAIN) for SS-FSL. Although it uses some
basic ideas of existing methods (e.g. pseudo labelling), it is a
new formulation achieving competitive performance against
existing complex SS-FSL methods. (2) We discuss the label

noise propagation issue and further propose PLAIN++ with a
denoising network and a mixture model. (3) Extensive exper-
iments on three widely used benchmarks (miniImagenet [11],
tieredImagenet [5] and CIFAR-FS [12]) show the superiority
of PLAIN and PLAIN++ over the state-of-the-art methods.

2. RELATED WORK

Few-Shot Classification can be categorised as metric-based
and gradient-based methods. Metric-based methods [11, 1]
focus on learning a generalised feature space where data
from the same class can be easily distinguished from those
from different classes using a distance metric, whilst gradient-
based methods [3, 13] use a meta-learner as an optimiser for
learning to learn model’s meta parameters. But these meth-
ods usually suffer from intrinsic drawback brought by limited
labelled data, and therefore achieves inferior performance.
Semi-Supervised Few-Shot Learning (SS-FSL) mostly fol-
low a meta-learning pipeline and estimate pseudo labels for
unlabelled data to update classifier. Ren et al. [5] propose to
extend ProtoNet [1] for SS-FSL by adopting soft k-means to
estimate pseudo labels for unlabelled data. Li et al. [7] pro-
pose a learning to self-train (LST) method to meta-learn a soft
weight network for unlabelled data. However, these meth-
ods show poor extension ability for dynamically recognising
novel classes and require episodic training. Recently, Trans-
Match [8] uses a transfer-learning framework for SS-FSL by
learning a cosine similarity based recognition model without
episodic training, but it does not consider pseudo label noise
for unlabelled data, resulting in sub-optimal performance.
Semi-Supervised Learning aims to leverage unlabelled data
to learn a model that better fits underlying data distributions.
Conventional solutions (e.g. consistency regularisation [14]
and entropy minimisation [15]) have shown promising perfor-
mance for semi-supervised learning but they cannot be readily
used in SS-FSL because of the scarcity of labelled examples.

3. METHODOLOGY

Problem Definition. Suppose we have a large-scale dataset
Db which contains sufficient labelled examples from base
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classes in Cb and a small-scale dataset Dn which has only
a few labelled examples and some unlabelled examples from
novel classes in Cn, where Cn is disjoint from Cb. The aim
of SS-FSL is to learn a classifier for recognising novel classes
using both few labelled examples and unlabelled examples in
Dn and labelled examples in Db as auxiliary data. Generally,
a small support set of N classes with K labelled exemplars
per class is sampled from Dn, resulting to a N -way K-shot
problem. Besides, additional R unlabelled images are sam-
pled from each of the N novel classes or distractor classes.

3.1. PLAIN: A Baseline Method for SS-FSL

As shown in Fig. 2, there are three steps in PLAIN: (a) Pre-
training, (b) Cosine similarity based recognition model with
extended weights, and (c-1) Iterative pseudo label refinement.
Pre-Training. We learn a Cosine-Similarity based Recogni-
tion Model (CSRM) [16, 17] f(θ,W ), which includes a fea-
ture extractor Φθ and a classifier σ(Φθ|W ) with classifica-
tion weights W = Wb for base categories, on a base training
dataset Db =

⋃Cb

b=1 {xb,i}
Nb

i=1 with Cb categories. We opti-
mise this model using cross entropy loss, which is formulated
as: 1

Cb

∑Cb

b=1
1
Nb

∑Nb

i=1 loss(xb,i, b), where loss(xb,i, b) =

−log(pb) and pb is the probability of xb,i over the b-th cat-
egory. Then, we evaluate this model on a validation set to get
a feature extractor Φθ∗ with the best generalisation.
Cosine Similarity based Recognition Model with Ex-
tended Weights. After pre-training, we get a CSRM f(θ∗,Wb)

and extend its classification weights as We = Wb

⋃
Wn,

where Wn are the classification weights for novel categories.
Specifically, suppose there are N(N > 1) support exemplars
xisup.{i = 1, ..., N} per class, we infer classification weights
Wsup. of a class by averaging feature vectors of training ex-
emplars from that class: Wsup. = 1

N

∑N
i=1 Φθ∗(xisup). Then,

we normalise the weight vectors to unit lengthWn =
Wsup.

||Wsup.||
and concatenate the weights for base and novel categories to
get classification weightsWe = Wb

⋃
Wn, resulting in an ex-

tended CSRM f(θ∗,We) for recognising both base and novel
categories. In this work, we use the CSRM f(θ∗,Wn) as the
few-shot classifier to recognise novel categories.
Iterative Pseudo Label Refinement. After the first two
steps, we use pseudo label refinement with iterative self-
training to learn a classifier with unlabelled data. Specif-
ically, we use the few-shot classifier f(θ∗,Wn) to estimate
pseudo labels for unlabelled data from Cn based on their
probability, and then we can select pseudo labels with high
prediction confidence to fine-tune the classification weights
Wn of f(θ∗,Wn) by averaging the feature embeddings of sup-
port and selected pseudo-labelled instances. As shown in
Fig. 2(c-1), this process is iteratively performed to remit the
label noise and gradually improving the classifier. We sum-
marise the training process of PLAIN in Algorithm 1 in the
supplementary material. Code will be available in https:
//github.com/panli93/SSFSL_PLAIN.

Support data

Denoising 
network

Loss distribution
Few-shot 
classifier

Feature 
extractor

Knowledge transferred 
from base classes

Knowledge adaptation 
on novel classes

[1,0,0,0,0]
[0,0,1,0,0]

. . .

Cross 
Entropy loss

GMM

Noisy

Clean

[1,0,0,0,0]
[0,0,0,1,0]

. . .

Pseudo-labels

Denoised
pseudo-labels

Rank 

Rank 

Augmenta-
tions

Pseudo-labelled 
instances

Denoised 
pseudo-labelled 

instances

Fig. 3. The pipeline of iterative pseudo label refinement with
pseudo label denoising in the proposed PLAIN++.

3.2. PLAIN++ for Resolving Label Nosie Propagation

Label Noise Propagation. During the iterative refinement
process, once a sample is assigned with an incorrect label
(e.g. blue points in Fig. 1), it might suffer from incorrect
prediction in the subsequent iterations and be assigned with
higher confidence value. This causes the label noise propa-
gation issue (a.k.a. the confirmation bias problem [18]). To
address this issue, we design a denoising network to learn re-
liable knowledge from novel classes for reducing bias derived
from base classes and use a Gaussian Mixture Model (GMM)
to model loss distributions of pseudo labels and penalise noisy
pseudo labels for reducing accumulated label noise.
Denoising Network. As shown in Fig. 2 (a), (b) and (c-
2), PLAIN++ consists of three steps, in which the first two
steps are the same as PLAIN, whilst the third step is im-
proved with a pseudo label denoising process. The pipeline
of iterative pseudo label refinement with pseudo label denois-
ing is depicted in Fig. 3. With the pseudo labels Lpl as-
signed by the few-shot classifier f(θ∗,Wn), we select reliable
pseudo-labelled instances Dpl

select and support data Dsup. to
train a denoising network. Generally, we use ξ percentage
of pseudo-labelled instances with high confidence per-class
from Dunl. as Dpl

select and perform two different random data
augmentations, i.e. weak augmentation (random crop and ran-
dom flip) and strong augmentation (RandAugment [15] using
three different items for augmentation with magnitude 10),
on these instances and support data to generate augmented
images Xw and Xr. Since pseudo labels with high confi-
dence usually contain less noise and random augmented data
contain potential transformations of instances, so they can be
used to learn richer data distributions of novel classes. Then,
to train a denoising network with these data, we use a cross-
entropy loss LCE for classification and employ a distillation
loss LKD [19, 20] to learn soft data distributions, which helps
to improve the generalisation of the denoising network for
remitting pseudo label noise. Here, LKD is formulated as
LKD = LKL(pw||pr) + LKL(pr||pw), where LKL(x||y) is
a loss metric with Kullback-Leibler (KL) divergence.
Denoising Pseudo Labels with GMM. During the network
training process, noisy labels often take longer to learn than
clean labels, so noisy pseudo-labelled examples will produce
higher losses at the early stage. This provides us a chance to

3



distinguish clean and noisy samples based on their loss dis-
tributions [21]. To this end, we use a two-component GMM
(J=2, l ∼ N(µj ,

∑
j)) to model loss distributions. For each

pseudo-labelled sample, the mixture model estimates a confi-
dence value for the pseudo label according to the correspond-
ing loss and penalises samples that do not satisfy the clean la-
bel distribution, avoiding assigning high confidence to incor-
rect prediction instances in the next iterations. Specifically,
with trained denoising network, we first get denoised pseudo
labels Ldpl forDunl.

⋃
Dsup. and calculate the loss l between

predictions of the denoising network and original pseudo la-
bels Lpl. Then, we fit GMM with l using the expectation-
maximization algorithm [22] and compute a confidence value
wi of each sample based on the posterior probability p(g|li),
where g is the gaussian component with a smaller loss. With
the few-shot classifier f(θ∗,Wn) and the denoising network,
we obtain two types of pseudo labels, i.e. Lpl and Ldpl for
a given sample. The confidence values produced by GMM
helps to select reliable pseudo-labels from Lpl or Ldpl. Since
Ldpl is assigned by the denoising network totally trained on
novel classes, we adopt the selected Ldpl to refine the few-
shot classifier f(θ∗,Wn), which prevents the label noise of Lpl
from being amplified during iterative refinement.

Besides, to further improve the quality of selected de-
noised pseudo-labels, we employ weak and strong (RandAug-
ment [23]) methods to transform instances. Thus, we have
two predictions with a confidence value for each sample,
i.e. pw with wiw and pr with wir. Then, we update the de-
noised pseudo-label pool by aligning two predictions and se-
lect η percentage of reliable instances Ddpl

select with high con-
fidence valueswiw+wir. After that the classification weights
Wn of few-shot classifier f(θ∗,Wn) are updated by averaging
feature embeddings ofDdpl

select andDsup.. By iteratively refin-
ing f(θ∗,Wn) and the denoising network with pseudo-labelled
instances (Ddpl

select and Dpl
select), the label noise propagation

problem derived from self-training is gradually reduced. We
summarise the training process of PLAIN++ in Algorithm 2
in the supplementary material.

4. EXPERIMENTS

Datasets. (1) miniImagenet [11] is a subset of the ILSVRC-
12 dataset [26], containing 100 classes with 600 images per
class. Following [13], we used 64, 16 and 20 classes as base,
validation and novel set. (2) tieredImageNet [5] is a larger
subset of ILSVRC-12 with 608 classes, which are semanti-
cally grouped into 34 broader categories. Following [5], we
used 20, 6, 8 categories as base, validation and novel set. (3)
CIFAR-FS [12] is a subset of CIFAR100 and includes 100
classes with 600 low-resolution images per class. Follow-
ing [12], we used 64, 16, 20 classes as base, validation and
novel set. For each dataset, we resized all images to 84×84.
We used the base set to pre-train a feature extractor and se-

lected a feature extractor with the best performance on valida-
tion set. We randomly selected 600 tasks from the novel set,
where each task has K support labelled data, 15 query data
and R unlabelled data per-class from N novel categories.
Implementation Details. Following [25], we used ResNet-
12 as the backbone for pre-training a feature extractor.
ResNet-12 contains 4 residual blocks, where each block has
three 3×3 convolutional layers and every convolutional layer
is followed by a BatchNorm layer and a LeakyReLU activa-
tion with 0.1. We employed dropout in each block and applied
a 2×2 max-pooling layer at the end of each residual block.
We used SGD with momentum 0.9 and L2 weight decay 5e-4
as the optimiser. We set the initial learning rate to 0.1 and
trained the model with 30 epochs for CIFAR-FS, 60 epochs
for other datasets. In each epoch, we randomly selected 8000
batches with size 32. As for the denoising network, we adopt
ResNet-10 with 4 blocks as the backbone. Each block of
ResNet-10 consists of three 3×3 convolution layers, where
each convolutional layer is followed by a BatchNorm layer.
We used SGD with momentum 0.9 and weight decay 5e-4 as
the optimiser. The batch size and learning rate were set to
64 and 5e-3, respectively. We set the number of iterations M
as 15 when η > 50%, otherwise set M as 10, and set the
epochs Te for training denoising network to 12 for warming
up the network in the first iteration and 6 in the remaining
iterations. For each SS-FSL task, we used Runl. = 100 un-
labelled samples per-class and maximumly selected η ∗Runl.
pseudo-labelled instances per-class to update CSRM f(θ∗,Wn)

(η = {50%, 100%}). For training the denoising network, we
set ξ to 60%/80% for the 1/5 shot setting in all experiments.

4.1. Comparison with State-of-the-Art Methods

In Table 1, we compared the proposed methods with 10 state-
of-the-art approaches. From Table 1, we see that: (1) Com-
pared with state-of-the-art methods, PLAIN achieves com-
petitive performance though it is simple, which shows ef-
fectiveness of this baseline; (2) With pseudo label denois-
ing for resolving label noise propagation, PLAIN++ fur-
ther improves PLAIN outperforming state-of-the-art methods
on miniImagenet and CIFAR-FS and is on par with ICI on
tieredImagenet; (3) With more pseudo-labelled instances, the
performance of PLAIN and PLAIN++ gradually improve.

4.2. Ablation Study

Components Analysis. To verify the effectiveness of each
component in PLAIN and PLAIN++, we conducted experi-
ments with CSRM(f(θ∗,Wn)), CSRM with pseudo label (PL),
PLAIN (full model), PLAIN with GMM (partial PLAIN++
model), PLAIN with weak and strong augmented (WSA) im-
ages and GMM (full PLAIN++ model). As shown in Table 2,
PLAIN with pseudo label refinement achieves substantial im-
provement compared with CSRM w/ or w/o pseudo labels in
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Table 1. Mean classification accuracies of the 5-way 1/5-shot tasks on miniImageNet, tieredImageNet and CIFAR-FS with
95% confidence interval.(a/b) represents selecting maximum a = η ∗Runl pseudo labelled instances per-class from b = Runl
unlabelled data per-class in 5-way 1/5-shot learning. Bold and Underline are the best and second best results, respectively.

Method Venue Backbone miniImagenet tieredImagenet CIFAR-FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Supervised
FSL

ProtoNet [1] NeurIPS16 Conv4-64 49.42±0.78 68.20±0.66 - - 72.20 83.50
Dynamic [16] CVPR2018 Conv4-64 56.20±0.86 72.81±0.62 - - - -
Imprinting [17] CVPR2018 ResNet12 58.68±0.81 76.06±0.59 - - - -
DSN-MR [24] CVPR2020 ResNet12 64.60±0.72 79.51±0.50 67.39±0.82 82.85±0.56 75.6±0.9 86.2±0.6

Meta-
learning
based
SS-FSL

MS k-means [5] ICLR2018 Conv4-64 50.41±0.31 64.39±0.24 52.4 69.9 - -
TPN-semi [6] ICLR2019 Conv4-64 52.78±0.27 66.42±0.21 55.7 71.00 - -
semi-DSN [24] CVPR2020 Conv4-64 53.01±0.82 69.12±0.62 54.06±0.96 72.07±0.69 - -
LST [7] NeurIPS19 ResNet12 70.1±1.9 78.7±0.8 77.7 85.2 - -

Transfer-
learning
based
SS-FSL

TransMatch [8] CVPR2020 WRN/28/10 63.02±1.07 81.19±0.59 - - - -
ICI [25] CVPR2020 ResNet12 71.41 81.12 85.44 89.12 78.07 84.79
PLAIN(80/80) Ours ResNet12 72.42±2.11 80.88±1.17 82.69±1.84 88.20±1.02 84.93±1.77 87.98±1.15
PLAIN (50/100) Ours ResNet12 72.06±1.94 79.75±1.49 82.40±1.85 87.29±1.13 83.47±1.61 87.42±0.97
PLAIN (100/100) Ours ResNet12 72.84±2.20 81.01±1.10 82.32±2.19 88.17±1.34 84.32±1.63 88.35±1.06
PLAIN++ (80 /80) Ours ResNet12 73.18±2.19 81.77±1.11 82.80±1.86 88.26±1.01 85.64±1.72 88.18±1.15
PLAIN++ (50/100) Ours ResNet12 73.88±1.98 81.73±1.13 82.62±1.93 87.99±1.20 84.50±1.67 88.37±1.04
PLAIN++ (100/100) Ours ResNet12 74.38±2.06 82.02±1.08 82.91±2.09 88.29±1.25 85.21±1.62 88.78±1.01

Table 2. Component effectiveness analysis on miniImageNet
with ResNet12 (mean accuracies (%) with 95% confidence
interval, 5-way 1/5-shot). We set Runl. = 100, η = 50%.

Method 1-shot 5-shot
CSRM 60.06 75.88

CSRM + PL 68.66±1.55 80.58±1.56
PLAIN 72.05±1.94 79.75±1.49

PLAIN+GMM 73.65±1.91 81.58±1.09
PLAIN+GMM+WSA 73.88±1.98 81.73±1.13

Fig. 4. Comparisons of CSRM+pseudo label (PL), PLAIN,
PLAIN++ on miniImagenet using different instance percent-
ages η and different backbones (Conv4-128 and ResNet-12).

the 1-shot setting. Although the improvement on 5-shot learn-
ing is not obvious for iterative pseudo label refinement, this
can be attributed to the label noise propagation problem. This
problem can be solved by the proposed GMM and WSA. As
shown in Table 2, PLAIN+GMM performs significantly bet-
ter than CSRM+PL and PLAIN in both 1/5-shot setting, while
the PLAIN+GMM+WSA further improves the performance.
Effect of Different Backbones and Percentage of Selected
Pseudo Labelled Instances. In Fig. 4, we reported re-
sults of CSRM+PL, PLAIN, PLAIN++ with different η on
miniImagenet using ResNet12 and Conv4-128 [16]. We set
η={0, 10, 20, 30, 40, 50, 80, 100}% and Runl.=100. We can
see that with a deeper network as the backbone, all compared

Table 3. Accuracies of various methods with Runl. =
{0, 15, 50, 100, 150, 200} on miniImagenet with ResNet12.
We both set η = 50% in all settings.

Runl.
Trans. PLAIN PLAIN++

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
0 58.68 76.06 60.06 75.88 60.06 75.88

15 - - 64.67 78.30 64.63 78.58
50 61.21 79.30 70.00 79.94 70.19 81.19
80 - - 71.76 79.78 73.16 81.41

100 63.02 81.19 72.05 79.82 73.88 82.19
150 - - 73.06 80.09 74.71 82.39
200 62.93 82.24 72.50 79.14 74.91 81.77

Fig. 5. Accuracies of 5-way 1-shot tasks on miniImagenet
under various distractors with ResNet12. We set η=20% and
Runl.=100 in CSRM+PL, PLAIN and PLAIN++.

methods improve their performance, where PLAIN++ per-
forms the best and PLAIN performs the second-best. Besides,
with different η, PLAIN++ still performs the best overall.
Effect of Number of Unlabelled Examples Per Class As
shown in Table 3, when more unlabelled data per class are
available, the performance of all compared methods im-
proves, among which PLAIN++ achieves the best perfor-
mance, which shows the scalability of our methods.
Robustness against Distractor Classes. Following [7, 8], we
mixed the original unlabelled data with the same number of
samples per-class randomly selected from other categories in
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the test set as the distractors and further evaluated our meth-
ods in SS-FSL with 1/2/3 distractor classes. As shown in
Fig.5, when distractors are included, accuracies of all com-
pared methods decrease, but PLAIN++ and PLAIN still per-
form competitive against the other methods.

5. CONCLUSIONS

In this work, we introduced a simple yet effective baseline
method (Pseudo LAbel refINement, PLAIN) for SS-FSL to
iteratively refine pseudo labels for learning a new classifier for
novel categories. Then, we discussed the label noise propaga-
tion problem and proposed PLAIN++ by improving PLAIN
with a denoising network for generating deniosed pseudo-
labels and a mixture model for learning distributions of clean
and noisy pseudo-labelled examples to select reliable pseudo-
labelled instances with less noise. We conducted extensive
experiments on miniImagenet, tieredImagenet and CIFAR-
FS. Experimental results show the effectiveness of PLAIN
and PLAIN++ over the state-of-the-art SS-FSL methods.
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