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Abstract

Support vector machines (SVMs) have shown great potential for learning classification functions that can be applied to object recognition.
In this work, we extend SVMs to model the appearance of human faces which undergo non-linear change across multiple views. The
approach uses inherent factors in the nature of the input images and the SVM classification algorithm to perform both multi-view face
detection and pose estimation. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Tracking people across a variety of views is becoming
increasingly important in computer vision systems. Apart
from traditional applications such as segmenting faces for
identity recognition [4,8,15], multi-view face detection and
tracking are also being used in smart-systems for visually
mediated interaction [14], inferring user intention in
human—computer interaction [1] and incident monitoring
[13]. The ability to extract visual cues such as gait or head
orientation allows advanced vision systems to better extract
information about their contextual situation. A better
perception of their prevailing operating conditions allows
such systems to interact more intelligently with their envir-
onment.

Head pose, in particular, provides good cues about the
general focus of attention of people. However, the appear-
ance of the human head can change drastically across differ-
ent viewing angles, mainly caused by non-linear
deformations during in-depth rotations of the head. Existing
template-matching and neural network systems would be
hard pressed to learn the whole gamut of multi-view face
appearances. Systems based on similarity measures to
prototypes, on the other hand, are to some extent still
restricted to the available views for the prototypes selected
in the training database [4]. Similarity measures can be
noisy and sensitive to the choice of representation. In
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order to perform accurate and robust face tracking across
views, its generalisation to novel views requires prior pose
information to be available.

In this work, we exploit the potential of support vector
machines (SVMs) [16] for generalising and transforming a
generic 2D facial appearance model across the view sphere
[3.,4]. In particular, we investigate the ability of SVMs to
identify important prototypes across different face poses to
provide a plausible solution for effective face detection at
different views, tracking across views and pose estimation at
no extra cost. We offer a viable solution for addressing the
needs for both multi-view face detection and pose estima-
tion at near-frame rate.

2. Support vector machines

SVMs are based on a generic learning framework
that has shown unique potential in resolving some
computer vision problems [7,10-12,16]. SVMs have
been applied to learn wavelet coefficients for detecting
human faces and pedestrians [7,8]. Mohan et al. [6]
used hierarchical SVMs to combine separate body-
part SVM classifiers into an object detector that can
deal with partial occlusion and a certain degree of in-
depth object rotation. SVMs have also been applied to
the task of event detection by learning object sizes and
trajectories [9]. Let us first outline the basic concept of
this approach to learning classification functions for
object recognition.
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2.1. Structural risk minimisation

Previous approaches to statistical learning have tended to
be based on finding functions to map vector-encoded data to
their respective classes. The conventional minimisation of
the empirical risk over training data does not, however,
imply good generalisation to novel test data. Indeed, there
could be a number of different functions which all give a
good approximation to a training data set. It is nevertheless
difficult to determine a function which best captures the true
underlying structure of the data distribution. Structural risk
minimisation (SRM) aims to address this problem and
provides a well-defined quantitative measure for the capa-
city of a learned function to generalise over unknown test
data. Due to its relative simplicity, Vapnik—Chervonenkis
(VC) dimension [16] in particular has been adopted as one
of the more popular measures for such a capacity. By choos-
ing a function with a low VC dimension and minimising its
empirical error to a training data set, SRM can offer a guar-
anteed minimal bound on the test error.

Perhaps the notion of VC dimension can be more clearly
illustrated through hyperplane classifiers. Given a data set
{x,y;},i=1,...,[, x € RY, y € { +1,—1}, a hyperplane
such as
wx)+b=0, weR", beR, (1
can be oriented across the input space to perform a
binary classification task, minimizing the empirical
risk of a hyperplane decision function f(x)=
sign((w-x) + b). This is achieved by changing the
normal vector w, also known as the weight vector.
There is usually a margin on either side of the hyper-
plane to the two classes. The VC dimension of the
decision function decreases, and therefore improves,
with an increasing margin. To obtain a function with
the smallest VC capacity and the optimal hyperplane,
one has to maximise the margin:
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The optimal hyperplane is mainly defined by the weight
vector w expressed in terms of the data elements with
non-zero Lagrange multipliers («;) in Functional (2).
Those data elements lie on the margins of the hyper-
plane. They therefore define both the hyperplane and
the boundaries of the two classes. The decision function
of the optimal hyperplane is thus:
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2.2. Support vector machines using kernel functions

A hyperplane classification function attempts to fit an
optimal hyperplane between two classes in a training data
set, which will inevitably fail in cases where the two classes
are not linearly separable in the input space. Therefore, a
high dimensional mapping

¢:RV—F

is used to cater for non-linear cases. As both the objective
function and the decision function is expressed in terms of
dot products of data vectors X, the potentially computation-
intensive mapping ¢(-) does not need to be explicitly eval-
uated. A kernel function, k(x, z), satisfying Mercer’s condi-
tion can be used as a substitute for (¢p(x)-¢(z)) which
replaces (x-z) [16].

For noisy data sets where there is a large overlap between
data classes, error variables ¢; > 0 are introduced to allow
the output of the outliers to be locally corrected, constrain-
ing the range of the Lagrange multipliers a; from O to C. Cis
a constant which acts as a penalty function, preventing
outliers from affecting the optimal hyperplane. Therefore,
the non-linear objective function is

1 1
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with corresponding decision function given by

i
f(x) = sign(Z yiok(x,x;) + b) )
i=1
There are a number of kernel functions which have been
found to provide good generalisation capabilities, e.g. poly-
nomials. Here we explore the use of a Gaussian kernel func-
tion (analogous to RBF networks) as follows:
2
x -yl

Gaussian Kernel k(x,y) = CXP( ?) ®)
o

3. The nature of face pose distribution

Detecting human faces across views involves the
recognition of a whole spectrum of very different face
appearances. The pose of the head reveals some details
about the 3D structure of the face while the prominent
ridges can mask others. Head rotations introduce non-
linear deformations in captured face images while the
rotation can occur in two axes outside the view plane of
the camera. A face’s main direction of reflection of
light also changes and affects the illumination condi-
tions of the captured image. For instance, ambient
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Fig. 1. A sample view sphere image-array with calibrated elements varying horizontally from 0 to 180° yaw and vertically from 60 to 120° tilt.

daytime lighting conditions in normal office environ-
ments are hardly symmetric for the top and bottom
hemispheres of the face, while the bias towards the
upper hemisphere is exacerbated by ceiling-fixed light
sources during the night.

The view sphere provides a framework for analysing
face pose distribution and for training SVMs over the
infinite number of possible pose angles of human faces.
For collecting training data, a 3D iso-tracking machine
can be used to capture human faces at preset yaw
(lateral) and tilt (vertical) angles. The tracking mechan-
ism can also provide semi-automatic segmentation facil-
ities for cropping the face. The result is an array of
accurately calibrated and cropped images as shown in
Fig. 1.

A face rotating across views forms a smooth trajectory as
can be seen in Fig. 2. In fact, faces form continuous mani-
folds across the view sphere in a pose eigenspace (PES). It is

plausible to suggest that head rotations describe a continu-
ous function in PES. This can be seen more clearly in Fig. 3.
In particular, a pattern appears for the vertical positioning
(from the selected view angle) of the groups of trajectories
across the view sphere. The volume enclosed by the entire
view sphere is more visible when the nodes of the sphere are
plotted individually as in Fig. 4. The distribution appears to
be a convex hull.

Given the correlations of the lateral bands of the face
sphere, we group the whole distribution into 19 different
clusters according to their yaw orientation (0-180°). We
observed that the trajectory of the mean positions of the
clusters, which are indeed their centroids in PES, struc-
tures the distribution across a main axis of variation.
This notion is further supported by the tangentiality of
the main axes of local variation inside the clusters
across the mean trajectory as shown in the lower right
picture in Fig. 4. The above observations strongly

2 2 B
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Fig. 2. Face rotation in depth forms a smooth trajectory in a 3D pose eigenspace.
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PC1

Fig. 3. From top to bottom: the graphs show the PES trajectories for a set of
10 people rotating their heads from profile to profile, at 60°, 90° and 120°
tilt, respectively.

suggest that the convex hull is more akin to a ‘tube’, a
volume function, through which data elements ‘flow’
from one end to the other as their yaw angles increase
from 0 to 180°.

4. Learning a face model across views using SVMs

SVMs perform automatic feature extraction and enable
the construction of complex non-linear decision boundaries
for learning the distribution of a given data set. As the task
to be learned is intrinsically a detection task, the bias intro-
duced for a particular subset of the feature space by projec-
tion into eigenspace is deemed to be detrimental to the
learning process. Therefore, pre-processing of the images
is limited to masking and intensity normalisation only and
the resulting images are learned as data vectors. The learn-
ing process and the number of support vectors for a data set
are determined in a principled way by only a few customi-
sable parameters which define the characteristics of the
learned function. In our case, the parameters are limited to
two: C, the penalty value for the Lagrange multipliers to
distinguish between noisy data and, o for determining the
effective range of the Gaussian kernels. Effective values for
the two parameters have already been reported for frontal
view face detection [7]. A value of C = 197 was adopted for
the training process and alternate values of C were found to
have minimal impact on classification accuracy. On the
other hand, the parameter o controls the ‘shape’ of the
agglomerated Gaussian kernels and a value of o= 158
was empirically found to provide good results while other
values did not appear to have any direct correlation with
classification accuracy.

We adopt a semi-iterative approach for obtaining good
examples of negative training data as proposed in Ref. [8].
The ideal negative images chosen by SVM training algo-
rithms for negative support vectors have been reported to be
naturally occurring non-face patterns that possess a strong
degree of similarity to a human face [7]. Given the highly
complex distribution of the view sphere described in Section
3, it is crucial to find good examples of these to allow the
training algorithm to construct accurate decision bound-
aries.

We first extend the training of a single frontal-view SVM
face model to the use of face images across the view sphere.
The process uses an iterative refinement methodology to find
important negative training samples from a database of
randomly selected scenery pictures. This process is shown in
Fig. 5. The resulting single SVM cannot cope with the degree
of view generalisation required when applied to face detection
across a significantly large range of views away from the
frontal view. However, the model is very useful for iteratively
collecting negative training samples beyond the near frontal
view. Such negative samples are then used to train a multi-
view face model based on a set of local component SVMs
along the view sphere.

Given the face distribution in PES as shown in Fig. 4, the
view sphere can be divided into smaller, more localised yaw
segments as in Table 1. The observed asymmetry of the
view sphere distribution and the greater complexity of the
left portion are reflected into the selection of smaller
segments for that region.
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Fig. 4. Counter-clockwise from the upper right image: side, front and top views of the distribution of the face sphere, with the trajectory of the mean yaw
clusters. The lower right image uses a special angle to show the direction of biggest variance of the yaw clusters (by the tangential lines) across the mean yaw

positions.

All the component SVMs were trained on the same global
negative data set. The size of the negative training data is
about 6000 images and of those, the SVMs selected 1666 as
negative support vectors in total, with only 36 shared
between two or more component SVMs. This shows that
the negative support vectors are well localised to the sub-
space of each yaw segment.

The modelling capabilities of the component SVMs and
their tendency to overflow to the neighbouring segments
corroborated with the previous observations of the structure

Set of Positive Positive Data

Face Images

of the distribution of the view sphere in PES. In general, the
component SVMs could detect faces at yaw angles of 10° on
either side of their training ranges. In some cases, the over-
lap was as much as 30°. The observed phenomenon also
shows that support vectors are localised in a composite
distribution such as the view sphere. They can be used to
detect either the whole distribution or smaller segments in
that distribution.

For face detection across the view sphere, the component
SVMs can be arranged into a linear array to form a

Database of various sceneries
for multi-resolution subscanning

SMO Training False Positives

Process

Initial Set of
Negative Random-
Noise Images

Negative Data

Added to the set of negative images

Fig. 5. Boot-strapping technique for obtaining negative support vectors.
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Table 1
The division of the view sphere for learning multi-view SVMs

Segment 1 2 3 4 5
Yaw angles (°) 0-10 20-40 50-80 90-130 140-180
No. of Elems 140 210 280 350 350
No. of Pos SVs 107 139 176 190 203
composite SVM classier as follows:
n

Composite SVM(x) = sign(z SVM(i, x) + 1) ©)]

i=1

where SVM(i,x) is the decision function f(x) for SVM

Table 2
Face detection on training data across the view sphere, grouped by human
subject

Training subsets Full detection (%) Multi-scaling (%)

1 100 100
2 97.7 100
3 94.7 100
4 92.5 97.0
5 82.7 85.7
6 88.7 99.2
7 94.7 97.7
8 100 100
9 99.2 100
10 97.0 98.4
60 60
70
PES "Tube"

60

50 50

Fig. 6. Top view of the face manifold across the pose eigenspace with pan angles labelled to each support vector (dark circles). The pose orientation of the
classification image (white circle) is retrieved from that of the closest support vector.

number i and n is the number of component functions used.

This multi-view face model can also be applied to pose
estimation across the view sphere. Fig. 4 shows the corre-
spondence of the yaw angles to the data elements’ positions
along the mean trajectory of the yaw clusters. A similar
correspondence of the tilt angles to their ‘vertical position’
from the selected viewing angles, with the variation lying
approximately perpendicular to the mean yaw trajectory,
can also be observed in Fig. 3.

Since the support vectors define the boundaries of the
face pose distribution, they lie on the ‘walls’ of the ‘tube’.
Furthermore, they are also localised with regard to the pose
sphere. Therefore, they can be effectively used to perform
pose estimation by using nearest-neighbour matching, as
shown in Fig. 6. Conceptually, SVMs are believed to
attempt to identify key support vectors which can solely
represent the structure of the face distribution across
views. The relative accuracy of the nearest-neighbour-
based pose-estimation technique when applied to support
vector prototypes, as shown in Section 5, lends a certain
degree of credence to the theory. In fact, this process of
pose estimation is retrieved at no extra computational cost
to the calculation of the decision function. Pose-estimation
has previously been performed separately from the face
detection process by learning the variations of point distri-
bution shape models [S5] and active appearance models [2].
Wang et al. [17] uses multiple cameras and hairline based
features to estimate the pose.

5. Multi-view face detection and pose estimation

We have applied the multi-view SVM-based face model
to perform both multi-view face detection and pose estima-
tion across views. First, we show the performance of the
multi-view face detection system on training data given in
Table 2.

It is important to point out that the accuracy in the align-
ment of face images plays a crucial role in the learning
process. Most of the misclassified elements of the view
sphere were correctly recognised after multi-scale scanning
of the images. The multi-scale scanning is performed on the
input images with a bias in each of the four directions to
correct misalignment of the face images.

Our previous work reported that the variation of the view
sphere distribution along the second principle component

=1, =1,-1 =, t?'illl B0 110

Fig. 7. Misclassification in lower hemisphere of the view sphere (shown by
—1, — 1). Image multi-scaling is shown with white rectangles.

-1,-1 -1,-1 -1,-1
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Fig. 8. Examples of detected and tracked moving faces. The graphs also show the estimated face pose (in grey) over time and their corresponding ground-truths
(in black), measured by electro-magnetic sensors. The vertical lines indicate moments in time where no face was detected.

axis was highly related to the level of local lighting in the
image [3]. Using an overhead light source can yield such an
effect on the captured images. The lighting conditions must
therefore help in the determination of the tilt orientation of
the faces. However, it also makes down-facing poses very
poorly illuminated and therefore, very difficult to detect by
the system as shown in Fig. 7.

The multi-view system was tested over a number of test
sequences of human subjects freely turning their heads in
3D space, with the ground-truths of the pose information
measured for comparison. The system was also connected to
an iso-tracking device, allowing face detection (alignment)
and pose estimation to be independently evaluated. Experi-
ments on three subjects are given here for illustration: the
subject with the worst training detection results (test
sequences A and B) and two novel subjects unknown to
the training process (test sequences C and D). They were

Table 3

selected to test the generalisation capabilities of the system.
Figs. 8—10 show example frames from different test
sequences in which novel faces were detected in multi-
views and tracked across views with their pose estimated
simultaneously. Table 3 provides a summary of the results
for the test sequences and it can be noticed that the detection
rate and the average pose estimation error do not vary
significantly between the sequences of known subjects and
those of unknown subjects, namely sequences A and B
against C and D.

6. Real-time performance

SVMs use kernel functions to learn and classify non-line-
arly separable data distributions. With typical support vector
sets of SVMs ranging in thousands and a kernel evaluation

Test results of the multi-view face detector and pose estimator from a total of over 1000 images from a set of test sequences

Test sequence Detection rate (%) Mean yaw error (°)

Mean tilt error (°)

A 100 11.07
B 84.9 11.467
C 82.9 13.57
D 99.6 8.73
E 99.2 8.90

6.62
6.32
7.29
8.67
8.21
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Fig. 9. Examples of topographical outputs from a multi-view composite
SVM classifier when applied to face detection at different views. The
detected faces are also shown.

required for each support vector, classification can become
computationally expensive. The problem can be further
exacerbated by the type of hierarchical multi-resolution
image scanning required for online face detection and track-
ing. SVM optimisation techniques such as the reduced or
virtual support vector set methods cannot be easily imple-
mented in the multi-view SVM system because of the
importance of each original support vector for determining
the pose of new images.

The performance of the SVM tracker was improved,
however, by continuously tracking objects, restricting the
range of resolution and image regions to be searched
according to previous tracking results. The active set of
component SVMs used for tracking can also be constrained
to the local sub-spaces where objects were previously
detected.

Furthermore, the output of the multi-view SVM classifier
exhibits positive peaks at regions of faces in the image, as
can be seen in Fig. 9. The peaks are at their strongest at the
centre of face regions where the best detection occurred.
Threshold filtering was found to give best detection loca-
tions more quickly than uniformly scanning the image.
However, noise exists due to translational misalignment in
the training face images at some poses. This can be observed
in some of the examples shown in Fig. 9. It was again
observed, however, that translational noise occurred mostly
along the vertical axis of the image with each scanned line
maintaining a perfectly distinguishable peak. This still
enabled us to implement a peak detection mechanism for
each scan line in order to avoid redundant scanning. By also
performing temporal prediction, we achieved a multi-view
face tracking and pose estimation at a frame rate greater
than 1 Hz on a standard 330 MHz Pentium PC running
Linux without utilising any special hardware. An example
of this multi-view tracking process is shown in Fig. 9.

7. Conclusion

In this work, we have shown that the complex distribution
of face poses can be modelled by a collection of view-based
component SVMs. Pose estimation can also be automati-
cally performed by Gaussian kernel functions used in the
multi-view SVMs, allowing both tasks to be performed by a
single integrated process, thereby, greatly reducing compu-
tation. More accurate pose estimation can be achieved by
using a better-aligned training set. Future research into
using the non-linear mapping learned by the SVM classifier
can also provide an improvement in pose estimation accu-
racy over the simple nearest-neighbour matching we
adopted for retrieving pose information from support
vectors.

On the matter of real-time performance, multi-view
SVM classification is still not computationally attractive
for real-time use. However, image-scanning using global
optima search methods provides a promising future for



J. Ng, S. Gong / Image and Vision Computing 20 (2002) 359-368 367

Fig. 10. Examples of near-frame rate face detection, tracking and pose estimation using a multi-view composite SVM. On the right of each picture are detected
faces in each image frame, its pose estimated in a dial, and the estimated pose versus the ground-truth from the Polhemus sensor over time.
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