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Abstract

Visual perception of faces is invariant under many trans-
formations, perhaps the most problematic of which is pose
change (face rotating in depth). We use a variation of Ga-
bor wavelet transform (GWT) as a representation frame-
work for investigating face pose measurement. Dimension-
ality reduction using principal components analysis (PCA)
enables pose changes to be visualised as manifolds in low-
dimensional subspaces and provides a useful mechanism for
investigating these changes. The effectiveness of measur-
ing face pose with GWT representations was examined us-
ing PCA. We discuss our experimental results and draw a
few preliminary conclusions.

1 Introduction

Techniques for computer vision-based automated face
recognition can be largely divided into three categories: 3D
model-based [2], 2D geometric feature-based [5, 7, 12], and
2D appearance-based matching [13, 20, 23]. We subscribe
to the view that the appearance-based approach is more
promising whilst neither 3D models nor 2D geometric fea-
tures can be extracted and matched robustly under changing
viewing conditions, in particular, face pose changes [3, 9,
26].

Face models must exhibit invariance under changes in
viewing conditions if robust recognition is to be performed.
Although it is possible that invariance under changes in il-
lumination, scale, translations and small rotations in the
image-plane can be achieved through a process ofnormal-
isation of face images, changes in face pose (rotation in
depth) cannot be easily “normalised”. A representation
based on specific features for all face poses may be difficult�
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to find since different image features seem to be relevant at
different poses. For example, the shape of a silhouette helps
distinguish poses between 3/4 view and profile view (see the
last 3 frames in Figure 1) but is not of much relevance in dis-
tinguishing poses between frontal view and 3/4 view (see the
first 3 frames in Figure 1). The reverse can be said about the
relative position of the nose with regard to the eyes and the
distance between the two eyes.

Figure 1. A face rotates in depth.

A more plausible [4] and robust [3] approach for repre-
senting face images of all poses requires the extraction of
pose relevant information in a manner which is somehow
holistic and independent of any judgement of specific fea-
tures. However, this does not necessarily mean exhaustive
representation. Appearance-based face recognition need not
require every view of every person to be stored. Rather, a
canonical view can be generalised from a range of views and
the pose sphere could be represented by only a few canon-
ical views [1, 4, 14, 21]. It is unclear though how an im-
age representation can be chosen which would give the best
measurable pose distribution of faces.

We use a Gabor wavelet transform to examine face repre-
sentation. This can be regarded as part of the normalisation
process and allows us to elegantly obtain invariance under
scaling as well as changes in illumination conditions, skin
tone and hair colour. It is also used to investigate the role of
locally oriented features at a range of spatial frequencies in
selecting face pose (see Figure 3). Although similar results
could be obtained with Gaussian derivative filters as used by
Rao and Ballard [23], the formulation of the GWT is better
unified and consequently more convenient to apply.
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Principalcomponentsanalysis(PCA) is widely usedfor
reducingthe dimensionalityof the representationspacein
orderto enableefficientmatching[13]. However, facesrep-
resentedby principalcomponentsaresensitiveto illumina-
tion conditions,scale,translationor rotationin the image-
plane.Whilst otherstudieshavebeenconcernedwith these
problems[6, 20], MuraseandNayar[18] haveusedtheprin-
cipal componentsof manyviewsof a singleobjectto visu-
alisethe high-dimensionalmanifold describedby changes
dueto rotationin depthandilluminationconditions.Theob-
ject’s posecouldthenbedeterminedby its positionon this
manifold. We usePCA in a similar way to investigatethe
distributionof faceposein high-dimensionalrepresentation
spaces.In particular, we investigatewhetherGWT repre-
sentationsarehelpful for distinguishingposes.

2 GWT Face Representation

A Gaborwavelettransform(GWT) enablesusto obtain
imagerepresentationswhicharelocallynormalisedin inten-
sity anddecomposedin spatialfrequencyandorientation.It
thusprovidesa mechanismfor obtaining(1) invarianceun-
der intensitytransformationsdueto illumination, skin tone
andhaircolour, (2) selectivityin scaleby providingapyra-
midrepresentation,andmoreimportantlyfor ourstudies,(3)
it permitsinvestigationinto therole of locally orientedfea-
tureswith regardto posechanges.

Figure 2. GWT kernels for 4 orientations (onl y
real par ts are sho wn).

We perform a GWT of an imageby filtering it with a
setof sinusoidallymodulatedGaussianfunctionsof differ-
ent spatial frequenciesand orientations,known as Gabor
functions[8] (seeFigure 2). We usea schemeproposed
by Würtz [26] in which convolutionswith Gaborkernels
areperformedefficiently in theFourierdomain.In this ap-
proach,a singleGaborfunction(themotherwavelet)is pa-
rameterisedby avector
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Thesecondtermresultsin “admissibility” i.e. zero-response
to spatiallyconstantintensity. Figure2 showsGWT kernels
in the imagedomainat 4 orientationsvaryingby 13254 from6 4 to 7985254 .

Figure 3. GWT faces are both scale and ori-
entation sensitive . The top row sho ws the 4
orientational responses at a low center fre-
quenc y whilst the mid dle and bottom rows
give responses from higher frequencies.

In our studies,the GWT usedwas parameterisedby 8
spatialfrequenciesand 1 orientationsvaryingby 13254 from6 4 to 79832:4 . A GWT imagerepresentationwascomprised
of a setof 12 responses.At lower frequencies,imagesare
“smoothed”to a largerextentresultingin lesssensitivityto
small translationsin the image-planeand greatercorrela-
tion betweennearbyimagesin asequence.However, using
excessivelylow frequenciescouldresultin lossof relevant
spatialstructure(seeFigure3).

The real and imaginary parts of the kernel responses
oscillatewith their characteristicfrequencymaking them
highly sensitiveto image-planetranslationsand therefore
ill-suited to matching. This undesirablepropertycan be
avoidedbytakingthemagnitudeof theresponsestherebyre-
movingphaseinformation[25]. Figure4 showsanexample
of themagnituderesponsesof theGWT. All theexperiments
donein this work arebasedon magnituderesponses.

Figure 4. GWT magnitude responses of the
face image sho wn in Figure 3.

3 Face Pose Eigenspace

Given an n-framesequence; �=< ;�>:?�;A@B?9CDC9CD?E;�FEGB@�H of a
headrotating in depth,a PoseEigen-Space(PES)can be
calculatedby applyingPCA to thesetof I frames.Projec-
tion of eachframeonto the first few eigenvectorsyields a
“low-dimensionalpatternvector” representation.In partic-
ular, projectionontothefirst threeeigenvectorspermitsvi-
sualisationof thedistributionof posesin therepresentation
space(seeFigure5).



A face pose distribution curve
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Figure 5. The PES of a face sequence of 60
frames rotating from profile-to-pr ofile . Only
20 frames from the sequence are sho wn here .

The poseof a novel face imageof the personcan be
estimatedby projectingit into this PES.For example,us-
ing Euclideandistancein the PES as an approximation
of Euclideandistancein the imagespace,the commonly
usedmethodsof minimisingthesum-of-squared-difference
(SSD)or maximisingthecorrelationbetweenimagescanbe
efficiently approximatedby minimisingEuclideandistance
in thePES[19].

4 Face Representations for PCA

It is perhapsinappropriateto performPCA on represen-
tationswhich arenot invariantto changesin viewing con-
ditions.Weexaminethreeformsof facerepresentationsfor
PCA. They are(1) normalisedintensityfaces J , (2) GWT
faces K � JL� , and(3) compositeGWT faces M � JL� (seeFig-
ure6).

Figure 6. Left: a normalised intensity face J .
Centre: a GWT face K � J3� . Right: a composite
GWT face M � JL� of equal dimensionality .

An imageis normalisedby subtractingthe meaninten-
sity anddividing by its standarddeviation. This corrected
variationsin overallillumination intensity, cameragainand

imagingaperture@ . A GWT face ) K � J3� is obtainedby su-
perimposingthe GWT responses.The result is similar to
the original intensity imageexceptthat intensitydistribu-
tionsarelocally normalised. A compositeGWT face M � JL�
of equaldimensionalityto K � J3� is formedby concatenating
four “oriented” 1/4 sizedGWT faces,eacha sub-sampled
(byafactorof four)Gaborresponsetoadifferentorientation
(seeFigure6). Now, a principal componentderivedfrom
this representationcanbevisualisedasacomposite“eigen-
image”consistingof, four orientedsub-images.Themag-
nitudeof eachpixel in suchaneigen-imageis a measureof
thevariabilityof theresponseof oneGaborkernelcentredat
thecorrespondingpositionin theoriginal image.Themag-
nitudesof thefirst eigen-imageindicatewhere in theimage-
planewhich orientationsencodethemostinformationabout
pose.

5 Experiments

5.1 Data Preparation

Two typesof imagesequencewerecapturedusingDat-
acubehardware.Firstly, severalsequencesof headsrotat-
ing from profile-to-profileunderdifferent lighting condi-
tionswereobtainedasoutputfrom a headtrackingsystem
describedelsewhere[15, 16]. Thesewere60 frameslong
andwereautomaticallynormalisedwith respectto transla-
tion andscaleby the tracker. An examplecanbe seenin
Figure5. Secondly, asetof labelledsequencesof 12people
wereobtainedundercontrolledconditionsin whichsubjects
wereaskedto look at markerson thewall positionedat an-
glesfrom

6 4 (frontalview) to N 6 4 (right profileview) in 7 6 4
increments.Profile-to-profilesequencesweregeneratedby
mirroringthesequences.Eachlabelledsequence,therefore,
consistedof 19 framesof known pose. Figure1 shows6
framesfrom suchasequence.Thesequenceswerecropped
manuallyand illumination variedbetweensequences.All
imagesweresub-sampledwith spatialsmoothingto O:1.PQO:1
pixels.

In orderto measuretheeffectsof pose,otherdegreesof
freedomsuchasimage-planetranslationsandscalechanges
shouldberemoved.An importantpoint to noteis thatrota-
tion of aheadresultsin ahorizontaltranslationof thefacein
theimage-plane.Thisraisestheproblemof howtoalignim-
agesof differentposes.Alignmentof facial featuresresults
in a sequencein which the“centroid” of theheadtranslates
horizontallyastheheadrotatesin depth.Alignmentbased
on establishingcorrespondencesbecomesproblematicdue
to occlusions. In the experimentsdescribedhere,imagesR

Thisisanapproximationsincefactorssuchasskintoneandhaircolour
alsoinfluencethefirst andsecondmomentsof intensityS

A “GWT face”-like representationcould also be obtainedby using
symmetricfilters.



arealignedapproximatelyaroundthevisualcentroidof the
head,eitherautomaticallyby thetrackeror manuallyfor the
labelledsequences.

5.2 Pose Manifold of Face Sequences

Initially, I -framesequenceswererepresentedusingim-
agesnormalisedfor overall intensity. A PESwasthencal-
culatedby applyingPCAto thesetof I frames.Threeunla-
belledsequencesof thesamepersonunderdifferentlighting
conditionswereprojectedontotheposeeigenspacederived
from only oneof thesesequences.Plottedon a 3D graph
in Figure7 arethe resulting3D patternvectors.The three
curvesform afairly smoothmanifoldparameterisedbypose
andillumination. In particular, the3rdPCseemsto capture
changescausedby lighting conditions.Thisis similar to the
manifoldsobtainedby MuraseandNayar[18] for various
non-face3Dobjectsunderroboticallymanipulatedposeand
illuminationconditions.In contrast,thefacesequencesused
herewereproducedby anautomaticvisualtrackingsystem
with left, right andambientlighting. As a result,themani-
fold shownhereis lesssmooth,reflectingmorerealisticcon-
ditions.

left lighting
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Figure 7. Manif old formed by three face se-
quences under diff erent lighting conditions
rotating from profile-to-pr ofile ( �TN 6 4 to / N 6 4 ).

5.3 PES of Mean Intensity Faces

A straightforwardwayto deriveagenericPESis to usea
meansequenceU; � � UJ > ?VUJ @ ?DC9CDC
?WUJ FLG*@ � formedbytakingthe
meanof normalisedintensityimagesateachposeangleover
manydifferentfacesequences.Theplot in Figure8 shows
the posedistributionof a meansequenceformedusing11
facesequencesof differentpeople.Also plottedarethepro-
jectionsinto this meanPESof a novel facesequenceanda

non-facesequenceof a fan rotatingsimilarly from profile-
to-profile. Now, theposeof thenovelfacesequencecanbe
estimatedsimplybyfindingthenearestpointalongthemean
curve.ThisisanefficientapproximationtominimisingSSD
or maximisingcorrelationbetweenanovelfaceandamean
faceof knownpose.Thedistanceof thenon-faceobjectto
thefacesin thisPESis distinctivelylargefor mostposean-
gles.Furthermore,it is interestingto notethatwhile the1st
PC separatesthe left andright poses,the 2ndand3rd PCs
jointly discriminatebetweenposesfrom profile to frontal
viewsreasonablywell. This canalsobeobservedfrom the
eigen-imagesshownabovetheplot. It is worthpointingout
thatalthoughwedidnotplothigherorderPCs,it isclearthat
the4th and5thPCscapturefinerchangesin poseangles.

mean face
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Figure 8. (1) Top row: the fir st 5 PC’s (PCs)
of the mean faces. (2) Plot: Projections onto
the fir st 3 PC’s of the mean face sequence , a
novel face sequence and a non-face object (a
fan) rotating from �TN 6 4 to / N 6 4 .

5.4 PES of Mean GWT Faces

We alsoderiveda PESbasedon GWT facesequences.
Thesecondpicturein Figure6 showsanexampleof aGWT
face. Similarly to the lastexperiment,we obtaineda mean
sequenceU;*X � � UK&>3? UKY@B?DC9CDC
? UK&F$G*@9� by taking the mean
GWT faceat eachposeangleover11 sequencesof differ-
ent people. Figure9 showsthe posedistributioncurveof
this meanGWT sequenceandtheprojectionsof two GWT
facesequencesinto thisPES.Comparedwith thePESof the
meanintensityfaces,theposedistributionsin both2ndand
3rd PCdimensionsaremorelinear. This maybedueto the
fact that theGWT facesarelesssensitiveto changesin il-
luminationanddifferencesin local features.However, PES



of GWT facesis moresensitiveto translationsin theimage-
plane.

mean GWT face
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Figure 9. Pose distrib ution cur ves of (1) the
mean GWT face representation of 11 face se-
quences (2) two test GWT face sequences. All
3 are projected into the mean GWT PES.

5.5 PES of Composite GWT Faces

WeperformedPCAsimilarly to thelasttwo experiments
with thecompositeGWT representation.Here,only a sin-
glespatialfrequencywasusedto simplify thecomputation.
Figure10showsthefirst5principalcomponentsof themean
compositeGWT sequence.It is interestingto notice that
while thesub-imageof the1stPCcorrespondingto horizon-
tal orientationplaysan importantrole in dividing thepose
anglesinto two groups,thesub-imageof the1stPCcorre-
spondingto verticalorientationhasrelatively little signifi-
cance. However, vertical orientationbecomesa dominant
factor in separatingposeanglesin all the otherPCs. This
is dueto the fact that all the sequencesusedin our exper-
imentsare strictly basedon face rotation from profile-to-
profile. Thissuggeststhatwhenfacesequencescontainpose
changesarisingfrom diagonalrotations,thesub-imagesof
PCsthat correspondto 132:4 and 79832:4 orientationsmaybe-
comemoresignificantin separatingposes.Figure10 also
showsposedistributioncurvesin thePESof themeancom-
positeGWT faces.Thisplot reinforcesourobservationsre-
gardingthe eigen-images.Comparedto both PESof the
meanintensityandGWT faces,theposedistributioncurves
arewell linearised.As a result,theposeanglesareclearly
divided into two groupsat the frontal view andarealmost
symmetricallydistributedalongtwo lines,clearlyseparable
andeasilymeasurable.

mean composite GWT face
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Figure 10. (1) The fir st 5 PC’s of the mean com-
posite sequence . The 4 sub-ima ges corre-
spond to Gabor responses at

6 4 (horizontal),132:4 , N 6 4 (ver tical) and 7Z85254 . (2) Projections of
the mean composite GWT face sequence and
two test face sequences into the mean PES.

6 Conclusions

In this paper, we addressedthe issue of measuring
facepose. We introduceda compositefacerepresentation
schemebasedon a Gabor wavelet transformin order to
both normaliseintensity and scaleand to investigatethe
role of locally orientedfeaturesin regularisingposedistri-
butions.Weusedposeeigenspacesbasedonprincipalcom-
ponentsanalysisto representandinterpretthedistributionof
posechangesfromcontinuousfacesequencesof rotationsin
depth.

In particular, wehaveshownthatposechangesof acon-
tinuousfacerotationin depthform a smoothcurvein pose
eigenspace.Whilst the first principal component(PC) of
thiseigenspacedividesall posesfrom profile-to-profileinto
two symmetricpartscentredat thefrontalview, theremain-
ing PCsdifferentiateposesbetweenprofileto frontalviews.
Thethird PCalsoseemsto capturechangesin illumination.

Furthermore,it seemsthat the posedistributioncurves
of facesin the poseeigenspaceare distinctively different
from thoseof non-faceobjects.AlthoughGWT representa-



tion reducesthecomplexityof posedistributions,it is sen-
sitive to translationalchangesin theimage-plane.More in-
terestinglythough,thecompositeGWTrepresentationgives
a highly linearposedistribution. It appearsthat theGabor
kernelsof differentorientationplaysomerole in “regularis-
ing” posedistributions. This is computationallyattractive
for determiningposesof novel faces. With further study,
sucharepresentationcouldbeusedtoconstructasimplebut
genericfaceposeeigenspacewhichin turncanbeusedtoes-
timateposesof unknownfaces.Thiscanbedonebyproject-
ing novel faceimagesinto theeigenspaceanddetermining
theirpositionsalongtheposedistributionmanifoldby sim-
ply measuringEuclideandistanceto themanifold[18]. Al-
ternatively, themanifoldcouldbemodelledprobabilistically
by asetof covariancematricesatdifferentposesbeforebe-
ingusedtomeasureposesbasedoncomputingMahalonobis
distance[17, 24].

As a final note, it is worth mentioningthat in this pa-
per, poseestimationhasbeentreatedessentiallyasa pat-
tern recognitiontask. Thereclearly exist, however, a va-
riety of spatialandtemporalcontextualcuessuchasbody
poseand continuity of posechangewhich could be used
[1, 10, 11, 22]. This will beoneof themainfocusesof our
futurework.
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