
Ranking-based Processing of SQL Queries

Hany Azzam, Thomas Roelleke, and Sirvan Yahyaei
Queen Mary, University of London, UK. E1 4NS

{hany,thor,sirvan}@eecs.qmul.ac.uk

ABSTRACT
A growing number of applications are built on top of search engines and
issue complex structured queries. This paper contributes a customisable
ranking-based processing of such queries, specifically SQL. Similar to how
term-based statistics are exploited by term-based retrieval models, ranking-
aware processing of SQL queries exploits tuple-based statistics that are de-
rived from sources or, more precisely, derived from the relations specified in
the SQL query. To implement this ranking-based processing, we leverage
PSQL, a probabilistic variant of SQL, to facilitate probability estimation
and the generalisation of document retrieval models to be used for tuple
retrieval. The result is a general-purpose framework that can interpret any
SQL query and then assign a probabilistic retrieval model to rank the re-
sults of that query. The evaluation on the IMDB and Monster benchmarks
proves that the PSQL-based approach is applicable to (semi-)structured and
unstructured data and structured queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and Re-
trieval; H.2.3 [Database Management]: Languages; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Performance evaluation
(efficiency and effectiveness)

General Terms
Algorithms, Languages, Performance

Keywords
PSQL (Probabilistic SQL), retrieval models, integrated DB+IR

1. INTRODUCTION
Applications built on top of search engines such as question an-

swering and data mining are gradually leveraging rich language
resources such as microformats (e.g.“geo” and “hAtom”) and
RDF/RDFa markup which can be integrated with content-based
resources [16]. Using these resources effectively requires com-
plex structural representations of information needs [4]. Addition-
ally, there may be retrieval environments where users are expert
searchers willing to use structured query languages. Librarians,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

application developers, patent searchers and users of legal infor-
mation systems often form complex queries.

Both search applications and expert searchers rely on informa-
tion retrieval (IR) approaches that can support constraint-checking
and ranking with respect to document structure and annotations as
well as keywords. Such approaches enable direct expression of
higher-level constraints on answer structures which can be checked
at retrieval time. One approach is to use SQL, which is still the
most widely used standard for formulating structured and semantic-
expressive queries [23], and extend it with similarity predicates to
perform the ranking, e.g. [5]. However, most of these approaches
use physical SQL math and aggregation operators (e.g. log, sum)
to express the ranking function. In other words, they specify the in-
formation need and the ranking function in the same query. From
an abstraction point of view, this mix is physical, since bare SQL
is used to implement the ranking. Other approaches, such as [6]
implement the ranking function directly on top of a physical doc-
ument representation. Such engineering approaches can also be
problematic because they result in implementations that are diffi-
cult to maintain and re-use [11, 8, 12].

A general-purpose framework for ranking structured queries can
address these issues by providing transparent and effective ranking.
We propose such a framework that interprets any SQL query and
then assigns a probabilistic retrieval model to rank the results of that
query. The interpretation is part of a processing strategy that fo-
cuses on satisfying the information need while concurrently adding
the model as part of the processing. To implement these models we
use Probabilistic SQL (PSQL, [22]), which helps to express them
in an abstract and logical way. The abstraction takes control of tu-
ple (the results from the structured query) probability estimation
and aggregation, which replaces the physical approaches that use
SQL aggregation operators. The resulting implementation is easy
to understand, debug and customise.

1.1 Contributions & Outline
To achieve the ranking-based processing of SQL, retrieval mod-

els (TF-IDF and language modelling) which are designed primar-
ily for document retrieval are generalised for tuple-based retrieval.
The main contribution of this paper is the SQL-to-PSQL algorithms
which transform the SQL queries to PSQL programs. These pro-
grams deliver an IR-model-based ranking of tuples retrieved for the
genuine SQL query and are evaluated using several benchmarks.

The remainder of the paper is organised as follows: Section 2
provides the essential background on probabilistic DB technology,
retrieval models and PSQL. Sections 3 and 4 cover the core contri-
butions of this paper: the generalisation from document retrieval to
tuple retrieval, and the evaluation. Section 5 summarises the paper
and concludes the discussion.

2. BACKGROUND & PRELIMINARIES

2.1 Probabilistic Databases
The research in this paper draws upon advances in probabilistic

data models. Early work extending relational and object-oriented
data models using fuzzy sets and probability theory can be found
in [3]. [17] discussed the notion of quality and its estimation
in databases using a probabilistic approach; the relational model
of data was extended and a quality specification was associated
with each relation instance. [15] introduced RankSQL, which in-
tegrates ranking support into SQL. Another significant approach is
the framework for probabilistic ranking of tuples based on a variant
of the BIR retrieval model [6]. This framework, which measures
the correlation between the specified and unspecified attributes to
produce the ranking, differs from the framework proposed here.
We support any probabilistic retrieval model and its variations,
and the probability estimation need not be modelled outside the
probabilistic framework. Efficient query evaluation in probabilistic
databases is discussed by [9], which proposes a system that effi-
ciently ranks the top-k answers to an SQL query on a probabilis-
tic database. This system provides an optimisation technique re-
ferred to as “safe-plan” that facilitates the efficient computation of
probabilistic results for queries. This technique also ensures that
the correctness of the probabilistic semantics is maintained. An-
other approach for improving query processing times, proposed by
[19], is based on materialising probabilistic views in probabilistic
databases. Other approaches concerned with the efficient ranking
of tuples, but geared towards specific types of data such as semi-
structured, have been initiated. [24] computes approximate top-k
results using probabilistic score estimators. As a result, retrieval
efficiency improves without a major loss in effectiveness.

The probabilistic relational modelling concepts employed herein
build upon the aforementioned research and the theoretical foun-
dations by [10], [9] and [19]. The contribution of this paper is to
leverage such concepts for the probabilistic ranking of tuples.

2.2 The Core Retrieval Models
This section reviews the core retrieval models (TF-IDF and LM)

used in this paper. To define this models, let ND(c) denote the
number of Documents in collection “c", and let nD(t, c) denote the
number of Documents with term “t" in collection “c", where dft :=
nD(t, c) is the document frequency. Similarly, let NL(c) denote
the number of Locations in collection “c", and let nL(t, c) denote
the number of Locations with term “t". NL(d) and nL(t, d) are
the Location-based counts for document “d", where tfd :=nL(t, d)
is the within-document term-frequency. The dual notation helps to
achieve the unifying definitions of TF-IDF and LM shown next.

DEFINITION 1. TF-IDF RSV:

TF(t, d) :=

{
nL(t,d)

nL(t,d)+Kd
BM25-like TF norm.

nL(t,d)
NL(d)

max-likelihood estimate
(1)

IDF(t, c) :=

{
− log2

nD(t,c)
ND(c)

− logND(c)
nD(t,c)
ND(c)

(2)

The TF-IDF term weight is a combination of TF and IDF values.

wTF-IDF(t, d, q, c) := TF(t, d) · TF(t, q) · IDF(t, c) (3)

The RSV is the sum over the TF-IDF weights.

RSVTF-IDF(d, q, c) :=
∑

t∈d∩q

wTF-IDF(t, d, q, c) (4)

The definition captures traditional TF-IDF and some of the prob-
abilistic and information-theoretic interpretations proposed in [7,
20]. TF(t, d) is the within-document term frequency component.
TF(t, d) can be set to one of the following: the BM25-motivated
quantification tfd/(tfd +Kd), Kd is a normalisation factor reflect-
ing the document length and is usually proportional to the piv-
oted document length (pivdl := dl / avgdl); and the maximum-
likelihood estimate PL(t|d) := nL(t, d)/NL(d), which estimates
the within-document term probability (dl := NL(d) is the docu-
ment length, i.e. the number of locations in document d).

IDF(t, c) is the inverse document frequency component. This
can be the negative logarithm of the term probability PD(t|c) :=
nD(t, c)/ND(c). IDF(t, c) can also be normalised, for example,
idf(t, c)/maxidf. This corresponds to the logarithm to baseND(c),
since the maximum idf value is maxidf :=− log 1/ND(c) [22].

The setting of the TF(t, d) to the BM25-motivated quantifica-
tion and the IDF(t, c) to the normalised (probabilistic) one are the
settings used for the experiments in Section 4.

DEFINITION 2. LM RSV: Language modelling (LM) [18] con-
sists of two term probabilities: the within-document term probabil-
ity P (t|d) (foreground model) and the collection-wide term proba-
bility P (t|c) (background model).

P (t|d) := PL(t|d) :=
nL(t, d)

NL(d)

(
=

tf(t, d)∑
t′ tf(t′, d)

)
(5)

P (t|c) := PL(t|c) :=
nL(t, c)

NL(c)

(
=

tf(t, c)∑
t′ tf(t′, c)

)
(6)

The LM term weight is defined as follows:

wLM(t, d, c) := log

(
1 +

λ

1− λ ·
P (t|d)
P (t|c)

)
(7)

RSVLM(d, q, c) :=
∑

t∈d∩q

TF(t, q) · wLM(t, d, c) (8)

The RSV is derived from the conditional probability P (q|d),
which is based on P (q|d)/(P (q) ·

∏
t∈q(1 − λ)TF(t,q)), i.e. a

query-based but document-independent normalisation of the query
probability P (q|d).The 0 < λ < 1 is the mixture parameter.
The query probabilities are decomposed as follows: P (q|d, c) =∏

t∈q P (t|d, c)TF(t,q) and P (q|c) =
∏

t∈q P (t|c)TF(t,q), where
P (t|d, c) is the mixed term probability.

2.3 Probabilistic SQL (PSQL)
The syntax of PSQL is like SQL apart from a few additional

syntactic elements. For example, in the PSQL SELECT statement,
one can specify an aggregation assumption in front of the target list,
an estimation assumption per source, and an estimation assumption
for the SELECT statement. One feature of PSQL is, hence, the esti-
mation assumption, which locates probability estimation within the
probabilistic relational paradigm. This differs from probabilistic re-
lational algebra [10] and approaches such as [1] where probability
estimation is modelled outside the relational paradigm, a feature
perceived as disadvantageous by both developers and designers.

Below we illustrate the most commonly used syntactic elements
particular to PSQL and their definitions. Their theoretical under-
pinnings are described in [22], and to improve readability, a sum-
marised version of the syntax of PSQL is illustrated in Figure 1.

DEFINITION 3. Aggregation assumption: DISJOINT, INDE-
PENDENT and SUBSUMED are the main aggregation assump-
tions. For DISJOINT, the aggregation corresponds to the sum of
probabilities. For INDEPENDENT, the aggregation is based on the
usual set overlap: P (A ∨ B) = P (A) + P (B) − P (A) · P (B).
For SUBSUMED, the aggregation yields the maximal probability.

−− PSQL query syntax (extract)
query ::= select_expr ' ; '
view ::= ' CREATE' 'VIEW' relName 'AS' select_expr ' ; '
select_expr ::=
' SELECT' [assumption] targetList

' FROM' sourceList
' WHERE' condition
[' EVIDENCE' 'KEY' '(' key ') ']
[' ASSUMPTION' assumption]

source ::= tradSrc | condSrc
tradSrc ::= relName | relName varName
condSrc ::= tradSrc ' | ' [assumption] ' (' key ') '

key ::= | attrName | attrName ' , ' key
assumption ::= ... % see Definition 5

Figure 1: PSQL Syntax. Terminal symbols are indicated by
single quotes.

DEFINITION 4. Evidence key: An evidence key is a set of at-
tributes. The notion “evidence” is borrowed from the conditional
probability P (h|e) where h is the hypothesis and e is the evidence.

In the relational world, P (Term|Doc) is a probability that can be
defined for a relation with attributes “Term" and “Doc". The set
{Doc} is the evidence key. Evidence keys can be specified for
the targets (SELECT targets) or for the sources (FROM source1,
source2, ...) of an SQL query.

DEFINITION 5. Estimation assumption: The estimation as-
sumption is related to the evidence key and describes the
way P (h|e) is estimated. The main assumptions are: Dis-
joint, Independent, Subsumed and the so-called complex assump-
tions (e.g. VALUE_FREQ (VF), INVERSE_VALUE_FREQ (IVF),
MAX_IVF, and similar for TUPLE_FREQ (TF)).

One important feature of the estimation is whether the assump-
tion is based on value frequency, or tuple frequency. Value fre-
quency corresponds to the number of distinct relations in which a
term occurs. For document-based retrieval (and IR in general), the
value in a (Key, Value) pair corresponds to a document, i.e. (Term,
Doc). Value-frequency-based estimation, for instance, is funda-
mental for estimating the IDF. An example of an assumption that
facilitates such an estimation is the MAX_IVF assumption, which
computes a probability according to the maximal inverse value fre-
quency. For IR, this is the maximal IDF, i.e. MAX_IDF.

Tuple frequency, on the other hand, corresponds to the number of
tuples (locations) in which a term occurs. For example, tuple-based
probability corresponds to the so-called within-document term fre-
quency (TF) of a term. This probability can be estimated using the
TUPLE_FREQ (TF) assumption.

3. TUPLE RETRIEVAL
In [22] the application of PSQL to document retrieval was

demonstrated. This lays the groundwork for this section where
the generalisation from document retrieval to tuple retrieval is pre-
sented. For the demonstration, assume a term-based representa-
tion of queries and documents. The schema consists of two ex-
tensional relations, “qIdx(Term, QueryId)" and “docIdx(Term, Do-
cId)". Given such a schema, document retrieval is:

−− Document retrieval in SQL
SELECT DISTINCT DocId, QueryId
FROM qIdx Q, docIdx D
WHERE Q.Term = D.Term;

A typical SQL query, as the one shown above, can be decom-
posed into two parts: an indexing part and a retrieval part. This de-
composition, which facilitates the discussion about the ranking of
tuples, is illustrated using the following SQL query on table “prop-
erties(Type, Area, Price)": find the areas with flats or studios in the
price range 200-250k.

SELECT Area
FROM properties
WHERE (Price BETWEEN 200 AND 250)
AND (Type=’Flat’ OR Type=’Studio’);

Step 1: Create a view to index the source “properties".

CREATE VIEW areaIndex AS
SELECT Type, Area
FROM properties
WHERE Price BETWEEN 200 AND 250;

The view illustrates how an index (“areaIndex(Type, Area)”) can
be obtained for one attribute (here, the property type) and then used
to retrieve areas with flats or studios in the price range 200-250k.

Step 2: Retrieve in document-retrieval fashion.

SELECT DISTINCT Area
FROM areaIndex D
WHERE D.Type = ’Flat’ OR D.Type = ’Studio’;

Figure 2 illustrates that this general decomposition helps to trans-
form any SQL query into a form aligned with that of document re-
trieval. The significance of this alignment is that the ranking func-
tions for document retrieval, such as the ones illustrated in the pre-
vious section, become applicable to tuple retrieval.

SELECT DISTINCT Doc
FROM docIdx D
WHERE D.Term = ’sailing’ OR D.Term = ’east’;

SELECT DISTINCT Area
FROM areaIndex D
WHERE D.Type = ’Flat’ OR D.Type = ’Studio’;

Figure 2: Alignment of Document and Tuple Retrieval

Having attained this aligned, or in other words, generalised, SQL
structure, a translation process takes place through which a well de-
fined ranking is attached to this SQL query. This translation process
is the transformation of the generalised SQL structure into PSQL
programs that implement ranking functions, such as TF-IDF or LM.
Note that the original information need (“Find from table proper-
ties the areas ...”) is intact; yet, instead of a set-based processing of
the SQL query, a rank-based processing takes place.

In the following sections we will illustrate the SQL-to-PSQL
(SQL2PSQL) translation process. To define the algorithms that
automate the SQL2PSQL translation, we use the following nota-
tion. Each SQL query has a set of conditioned attributes (referred
to as X), a set of target attributes (referred to as Y) and a source
relation(s) (referred to as Z). For example, in document retrieval
X = {Term}, Y = {DocId} and Z = docIdx. Figure 3 presents
the generalised structure of an SQL query.

SELECT DISTINCT Y −− Y: {target attributes }
FROM Z −− Z: {sources}
WHERE Z.X1=’value1’ OR Z.X1=’value2’ ...; −− X: {conditioned attr.}

Figure 3: Generalised Structure of an SQL Query

We now formalise the SQL2PSQL translation. The first algo-
rithm decomposes the SQL expression and generates probabilistic

views (spaces) that are later combined according to the ranking ra-
tionales of retrieval models, such as TF-IDF and LM. With respect
to the generalisation of document retrieval to tuple retrieval, the
location frequency corresponds to the tuple frequency, and the doc-
ument frequency corresponds to the value frequency.

ALGORITHM 1. SQL2PSQL: Basic Views
For each conditioned attribute in X in SQL query “SELECT

DISTINCT Y FROM Z WHERE X” create the following views:

1. Tuple-based (Location-based) probabilities: p_Z_X. Proba-
bility PZ(X) is the tuple-based probability of X . View nam-
ing example: p_docIdx_Term.

−− Tuple retrieval −− Document retrieval
CREATE VIEW p_Z_X AS −− p_docIdx_Term
SELECT SUM X −− X=Term
FROM Z | (); −− Z=docIdx

−− Prob semantics: P_Z(X) −− P_docIdx(Term)

2. Value-based (Document-based) probabilities: p_Y_Z_X.
Probability PZ[Y](X) is the value-based probability of X .
View naming example: p_DocId_docIdx_Term.

−− Tuple retrieval −− Document retrieval
CREATE VIEW p_Y_Z_X AS −− p_DocId_docIdx_Term
SELECT X −− X={Term}
FROM Z −− Z=docIdx
ASSUMPTION VALUE_FREQ −− DocId_Freq
EVIDENCE KEY ();
−− Prob semantics: P_Z[Y](X) −− P_docIdx[DocId](Term)

3. Conditional probabilities in sources: p_Z_X_Y . Probabil-
ity PZ(X|Y) is the conditional probability of X . View nam-
ing example: p_docIdx_Term_DocId.

−− Tuple retrieval −− Document retrieval
CREATE VIEW p_Z_X_Y AS −− p_docIdx_Term_DocId
SELECT SUM X, Y −− X={Term} Y={DocId}
FROM Z | (Y); −− Z=docIdx
−− Prob semantics: P_Z(X|Y) −− P_docIdx_Term_DocId

4. Information-based probabilities: p_inv_Y _Z_X . Probabil-
ity PZ(X informs) is the probability ofX is informative. View
naming example: p_inv_DocId_docIdx_Term.

−− Tuple retrieval −− Document retrieval
CREATE VIEW p_inv_Y_Z_X AS −− p_inv_DocId_docIdx_Term
SELECT X FROM Z −− X={Term} Y={DocId} Z=docIdx
ASSUMPTION MAX_IDF −− idf(t) /max_idf
EVIDENCE KEY ();

The SQL2PSQL algorithm generates probabilistic views indepen-
dent of a particular retrieval model. The algorithms illustrated in
the following sections show how and which of these views are used
to construct retrieval models such as TF-IDF, LM and BM25.

3.1 TF-IDF-based Processing of SQL Queries
Algorithm 2 shows how a TF-IDF PSQL program is automati-

cally generated for the genuine SQL query in Figure 3.

ALGORITHM 2. SQL2PSQL(TF-IDF)
Step 1: Create for each conditioned attribute X in SQL query

“SELECT DISTINCT Y FROM Z WHERE cond(X)” one view to
reflect tf and another one to reflect idf.

−− PSQL views generated for TF−IDF−based Retrieval

−− Tuple retrieval −− Document retrieval

CREATE VIEW Z_X_Y_tf −− docIdx_Term_DocId_tf
SELECT X, Y FROM p_Z_X_Y; −− p_docIdx_Term_DocId

CREATE VIEW pidf_Z_X −− pidf_docIdx_Term
SELECT X FROM p_inv_Y_Z_X; −− p_inv_DocId_docIdx_Term

Step 2: In the genuine query, replace each source (Z) by
the tf (variable D) and idf (variable Q) relations of the spec-
ified attributes. Replace each ordinary condition Z.X=‘value’
by Q.X=‘value’ AND Q.X=D.X. Replace each join condition
Z1.X=Z2.X by D1.X=D2.X AND Q1.X=D1.X AND Q2.X=D2.X.

For a genuine query SELECT Y FROM Z WHERE Z.X=‘value1’
OR Z.X=‘value2’, the output is:

SELECT SUM D.Y −− Y={DocId}
FROM pidf_Z_X Q, Z_X_Y_tf D −− Z=docIdx, X={Term}
WHERE Q.X=’value1’ AND Q.X=D.X
OR Q.X=’value2’ AND Q.X=D.X;

To improve readability, we omit the output for join conditions. The
algorithm generates a PSQL program for TF-IDF-based retrieval.

THEOREM 1. Algorithm SQL2PSQL(TF-IDF) is correct.
PROOF. The view Z_X_Y_tf (for document retrieval,

p_docIdx_Term_DocId, i.e. the “TF" component) has the
probabilistic semantics PZ(X|Y) (PdocIdx(Term|DocId)). The
view pidf_Z_X (for document retrieval, pidf_docIdx_Term) has
the semantics P (X is informative) = idf(X)/maxidf(c). The
probabilities in the SQL query “SELECT SUM D.Y" correspond
to
∑

t∈d∩q TF(t, d) · IDF(t, c)/maxidf(c).

3.2 LM-based Processing of SQL Queries
Algorithm 3 shows how an LM PSQL program is automatically

generated for the genuine SQL query in Figure 3.
ALGORITHM 3. SQL2PSQL(LM)
Step 1: Create for each conditioned attribute X in SQL query

“SELECT DISTINCT Y FROM Z WHERE cond(X)” one view for
the foreground and one view for the background model. These cor-
respond to the document model and the collection model, respec-
tively. The foreground and background models are weighted with
the respective mixture parameters. Next, the foreground is united
with the background model. This yields the LM mixture in view
“Z_X_mix".

−− PSQL views generated for LM−based Retrieval

−− Tuple retrieval −− Document retrieval
−− foreground (fg) model −− document model: P(t|d)
CREATE VIEW Z_X_Y_fg AS −− docIdx_Term_DocId_fg
SELECT X, Y −− X={Term}, Y={DocId}
FROM p_Z_X_Y; −− p_docIdx_Term_DocId

−− background (bg) model −− collection model: P(t |c)
CREATE VIEW Z_X_bg AS −− docIdx_Term_bg
SELECT X −− X={Term}
FROM p_Z_X; −− p_docIdx_Term

−− To conserve space, the automatic generation of weighted
−− foreground model and background model is omitted

−− lambda_Z_X_fg
−− lambda_Z_X_bg

CREATE VIEW Z_X_mix AS −− docIdx_Term_mix
lambda_Z_X_fg UNION DISJOINT −− lambda_docIdx_Term_fg
lambda_Z_X_bg; −− lambda_docIdx_Term_bg

Step 2: In the genuine SQL query, replace each source (Z)
by Z_X_mix. For a genuine query SELECT Y FROM Z WHERE
Z.X=‘value1’ OR Z.X=‘value2’, the output is:

SELECT PROD D.Y
FROM Z_X_mix D
WHERE D.X = ’value1’ OR D.X = ’value2’ ...

THEOREM 2. Algorithm SQL2PSQL(LM) is correct.

PROOF. The probabilistic views Z_X_Y_fg (P (t|d)) and
Z_X_bg (P (t|c)) correspond to the docModel and collModel views
in the reference implementation. The view Z_X_mix has the se-
mantics P (t|d, c) = λ · P (t|d) + (1 − λ) · P (t|c). The prob-
abilities in the SQL query “SELECT PROD D.Y" correspond to
P (q|d, c) =

∏
t∈q P (t|d, c).

This concludes the ranking-based processing of SQL queries.
The SQL2PSQL translation has been given for a simple SQL query
(one source relation, one specified attribute, one target attribute).
The translation, however, applies to multiple sources, ordinary and
joined conditions and several attributes in the target list, all of
which have been demonstrated in the algorithms and proofs.

4. EVALUATION
The purpose of the evaluation is to demonstrate the feasibility

of the proposed technology, namely the PSQL framework and the
SQL2PSQL functionality.

Evaluating such a framework that primarily argues for abstrac-
tion and openness, in our point of view, requires benchmarks that
measure the capability of a technology to satisfy both the needs
of structured search and the broader needs that arise because of
task complexity, customisation, and change management. Indeed,
the ability to calculate the costs for improving the retrieval quality
would be ideal for judging the benefits of the proposed technology.
Such productivity-oriented (change management) benchmarks and
evaluations are part of future research. For the scope of this paper,
we instead present a retrieval quality vs. retrieval time evaluation.

4.1 Set-up
Table 1 outlines the statistics of the two benchmarks which the

evaluation employs.

Size docs topics
MB ND(c) NQ(c)

IMDB 1,800 437,281 40
Monster 2,005 1,040,000 60

Table 1: Benchmarks Statistics

The experiments were run on a single CPU using a DB+IR pro-
totype [22] that supports the retrieval of text, structured and semi-
structured data. The prototype provides an open-box framework
with high-level and customisable concepts to represent/model data
and PSQL to implement ranking models.

To demonstrate how the modelling framework performs, we
evaluate the generated retrieval models, TF-IDF and LM (settings
in Section 2.2), with respect to a restricted evidence size. In stan-
dard IR this corresponds to processing the most selective terms first
and choosing the top-k document Ids from the posting list. Similar
processing techniques were used herein.

We present how the retrieval quality and time increase propor-
tionally with an increase in evidence size. The aim is to investigate
the implementation of the retrieval models by examining how much
quality could be achieved and at what cost. This cost-based evalua-
tion is with respect to the retrieval model itself and how favourably
or poorly it utilises the underlying evidence.

One achievement of this work is to support nested expressions
whereby the required efficiency can be achieved via top-k and
evidence-based processing. Nowadays, relational approaches to IR

often rely on materialisation and are based on stepwise process-
ing pipelines. The views used to implement the models, however,
have not been materialised, and, hence, the cost includes the time
to generate and process them.

We report the retrieval quality of the generated programs and
the average retrieval time (total retrieval time divided by the total
number of queries) of the generated programs against the number of
evidence tuples. The number of considered evidence tuples ranges
from 10,000 to 200,000. We use Mean Average Precision (MAP)
and Reciprocal Rank as the evaluation metrics.

4.1.1 Baselines
The baselines are based on the document-oriented TF-IDF and

LM retrieval models with no top-k processing. In other words, the
structure of the data is not taken into consideration by the retrieval
model and a bag-of-words representation is utilised (this is similar
to the experimental methodology reported in [2]). In the case of
tuple retrieval, however, the document structure (see Section 4.2
for the list of element types) is considered when constructing the
SQL queries. Note that the purpose of the evaluation is primarily to
present the feasibility of the modelling framework and translation
algorithms. Other retrieval models, such as [14], can be generated
by the SQL2PSQL algorithms, specifically Algorithms 1 and 3.

4.1.2 Query Formulation
For both benchmarks, the keyword queries and the ideal mapped

attribute for each query term are used. This ideal attribute is ex-
tracted from the set of relevant documents for each query.

The intuition behind the mapping is that if a term occurs fre-
quently within a certain element type then the term is more likely
to be “characterised” by that particular type [14]. This map-
ping method offers a convenient way to automatically transfer a
keyword-based query to a structured one. The correctness of the
extracted attribute is verified manually. After the SQL query is
formulated it is automatically augmented with the desired ranking
strategy which results in a relevance-based processing of that query.
Below is an example of an SQL-based formulation of IMDB query
number 28 “gladiator action maximus scott”.

gladiator action maximus scott
SELECT Movie
FROM movies WHERE Title = ’gladiator’ AND Genre = ’action’
AND Plot = ’maximus’ AND Director = ’scott ’ ;

As noted above, when creating the SQL queries for the IMDB
and Monster benchmarks, only the top-mapped attribute for each
query term is considered. For example, the top-mapped attribute
for query term “gladiator” is “Title”. This is particularly impor-
tant when evaluating a larger and noisier dataset such as Monster
because the significant term overlap among the different elements
makes estimating the correct attributes a challenge. In practice,
the entire dataset, and not just the relevant documents, is used to
deduce the mappings. Additionally, experiments [14] have shown
that improving the accuracy of the mappings and considering more
mappings per query term can improve retrieval performance. How-
ever, the focus of our experimental study is not on the mapping
process, and the SQL2PSQL facility is flexible enough to process
queries with multiple attributes in the target list and any other cus-
tomisations that adapt a retrieval model to a particular application.

4.2 IMDB
The evaluation results in the previous section indicate a good re-

trieval quality below the one second ceiling on an IR-specific text
dataset. We now extend the evaluation of the translation methods

and ranking functions to more semantic/structured benchmark. The
IMDB dataset is formatted in XML and was constructed from text
data (http://www.imdb.com/interfaces#plain). Each document cor-
responds to a movie. The element types are “title", “year", “re-
leasedata", “language", “genre", “country", “location", “colorinfo",
“cast", “team" and “plot".

MAP RecipRank Time (s)
SQL2PSQL(TF-IDF:10k) 44.01 45.42 00.24
SQL2PSQL(TF-IDF:20k) 46.09 47.42 00.59
SQL2PSQL(TF-IDF:50k) 48.80 48.58 00.70
SQL2PSQL(TF-IDF:100k) 49.96 49.27 00.87
SQL2PSQL(TF-IDF:200k) 54.37† (+13.06) 55.64† (+13.92) 01.28
Baseline: TF-IDF:All 48.09 48.84
SQL2PSQL(LM:10k) 27.75 29.19 00.19
SQL2PSQL(LM:20k) 31.30 32.19 00.50
SQL2PSQL(LM:50k) 42.70 43.89 00.75
SQL2PSQL(LM:100k) 43.90† (+09.37) 44.43† (+08.63) 01.05
SQL2PSQL(LM:200k) 41.85 42.47 01.27
Baseline: LM:All 40.13 40.90

Table 2: Quality w.r.t number of evidence tuples considered;
the best overall result is in bold, and the best result out of the
baseline and its tuple-based variant is italicised; results that
are statistically significant (p < 0.05) above the baseline are
denoted by †, as determined by a signed t-test.

There are several processing steps that present the data in the
form that is best situated for achieving effective retrieval. For ex-
ample, we have opted to propagate the keywords occurring within
elements such as “actor" and “director" upwards to their corre-
sponding part. Having a coarser schema helps to improve the accu-
racy of the derived attributes for each query term. Another exam-
ple is that the terms that occur in a specific context have also been
propagated upwards to the root element. This propagation helps to
model document-based retrieval as opposed to element-based one.

[14] provided the test-bed which included 40 queries. These
queries were created assuming a situation in which a user wants
to find a movie using partial information spanning over many ele-
ments. Relevant documents were found manually.

As discussed in Section 3, the SQL queries are decomposed into
two parts: an indexing part and a retrieval part. The indexing part
is done using the representation of the IMDB benchmark. In the re-
trieval part, for each query the SQL2PSQL algorithm (Algorithm 1)
generates a set of probabilistic views independently of a particular
retrieval model. These views are then used to construct the desired
retrieval model. For the evaluation, the generated relevance-based
ranking of the SQL queries is based on SQL2PSQL(TF-IDF) and
SQL2PSQL(LM) algorithms (Algorithm 2 and Algorithm 3).

In Table 2 the values in parenthesis represent the relative (per-
centage) difference in performance from the baseline results. If evi-
dence beyond the 200,000 tuples for the generated TF-IDF program
is considered, retrieval quality continues to monotonically increase.
However, considering further evidence tuples for the generated LM
program (optimal performance λ ≈ 0.7) does not significantly in-
crease retrieval quality. In fact, after a certain amount of evidence is
considered, the quality starts to decrease. As previously discussed,
the degradation in performance is due to the top-k operators, which
are optimised for TF-IDF-based models.

4.3 Monster
The benchmark contains longer documents with more com-

plex structure and full text content than the IMDB. Moreover, the
queries, which are requests for jobs created by real users of the
Monster service, are longer and more complex. The data and
queries were licensed from “http://www.monster.com”. An exam-

ple of a keyword-based query is “aircraft airplane mechanic tech-
nician tech fort riley kansas". This query seeks an Aircraft Struc-
tural Mechanic to determine the methods to repair malfunctioning
or damaged components of aircrafts in Fort Riley, Kansas.

MAP RecipRank Time (s)
SQL2PSQL(TF-IDF:10k) 22.00 39.17 00.41
SQL2PSQL(TF-IDF:20k) 23.89 42.51 00.98
SQL2PSQL(TF-IDF:50k) 24.79 46.94 01.13
SQL2PSQL(TF-IDF:100k) 27.04 51.84 01.32
SQL2PSQL(TF-IDF:200k) 29.22† (+11.34) 54.45† (+13.39) 01.85
Baseline: TF-IDF:All 26.23 48.02
SQL2PSQL(LM:10k) 17.10 22.25 00.42
SQL2PSQL(LM:20k) 18.04 26.51 00.78
SQL2PSQL(LM:50k) 20.91 30.94 00.91
SQL2PSQL(LM:100k) 22.84† (+08.09) 32.84† (+08.24) 01.31
SQL2PSQL(LM:200k) 21.02 31.45 01.78
Baseline: LM:All 21.13 30.34

Table 3: Quality w.r.t number of evidence tuples considered;
the best overall result is in bold, and the best result out of the
baseline and its tuple-based variant is italicised.

Similar to when representing the IMDB benchmark we have
adopted a coarse schema which helps to improve the accuracy of
the derived SQL queries. The selected elements in the schema
include “resumetitle", “summary", “desiredjobtitle" and “school-
record". The terms occurring in a specific context have been prop-
agated upwards to the root element. The SQL queries and the base-
line were constructed similarly to those in the IMDB benchmark.

Table 3 illustrates the quality results of the TF-IDF and LM
generated programs. As observed for the IMDB, considering ev-
idence tuples beyond 200,000 does not significantly increase re-
trieval quality. The average retrieval times demonstrate the pro-
cessing cost for the ranking-based processing of the SQL queries.
The retrieval quality is reasonable at the one second ceiling, but fur-
ther precision requires longer retrieval times. Although the retrieval
times appear to be scalable, the processing costs can present a fur-
ther challenge if lager text-based or semi-structured datasets are
used. One solution is proposed by [13], which demonstrates how
the probabilistic relational/descriptive approach employed herein
can be parallelised to achieve scalable processing.

5. SUMMARY & CONCLUSION
[22] demonstrated that PSQL provides sufficient expressiveness

for modelling document retrieval models. This paper advances the
feasibility of using IR models for processing SQL queries and de-
velops the application of PSQL for tuple retrieval. The SQL2PSQL
translation algorithms were shown to generate PSQL programs that
assign an IR-model-based, probabilistic ranking to the tuples re-
trieved for an SQL query.

The evaluation showed that the PSQL framework and the
SQL2PSQL facility deliver good retrieval performance. This out-
come is a direct consequence of the IR models. The main con-
tributions of SQL2PSQL are customisable rankings and the ex-
pressiveness to model tuple retrieval while incorporating keyword-
based document retrieval models. A quality-oriented evaluation is
required. Ideally, however, this evaluation should measure how
DB+IR technology improves productivity, and specifically, how it
adapts to customer-tailored and changing relevance criteria. The
SQL2PSQL architecture delivers this flexibility, and developing
such an evaluation measure is part of future research.

The ranking-aware processing of SQL queries is particularly rel-
evant at a time when SQL queries, and more generally, structured
queries, are increasingly being generated by applications built on
top of search engines. The SQL2PSQL facility is also applicable to

other structured query languages such as SPARQL. For example,
an SPARQL2SQL translation, which acts as a query processing
front-end, or a more direct one, such as SPARQL2PSQL, can be
implemented. This re-use of the proposed SQL2PSQL technology
can lead to general-purpose DB+IR solutions.

The automatic generation of PSQL from SQL has a twofold im-
pact. The generation of “seamless” DB+IR technology becomes
more accessible since applications/users are not required to learn
PSQL to achieve customisable and re-usable retrieval strategies.
Moreover, well-defined rankings are available as modules ready to
be tailored to specific search tasks and to other structured query
languages. In summary, the presented DB+IR approach supports
the use of SQL and extends the well-defined IR models for the ef-
fective ranking of documents and tuples.

6. ACKNOWLEDGMENTS
We are grateful for the support of Yahoo! Labs Barcelona. We

would also like to thank Prof. Bruce Croft for providing us with the
two benchmarks, and the reviewers for their excellent suggestions.

7. REFERENCES
[1] D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic

relational data model. In Proc. of EDBT, 1990.
[2] M. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg. Structured retrieval

for question answering. In Proc. of SIGIR, 2007.
[3] P. Bosc, M. Galibourg, and G. Hamon. Fuzzy querying with sql:

extensions and implementation aspects. Fuzzy Sets Syst.,
28(3):333–349, 1988.

[4] J. Callan. Search engine support for software applications. In Proc. of
CIKM, 2010.

[5] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, and
D. Srivastava. Benchmarking declarative approximate selection
predicates. In Proc. of SIGMOD, 2007.

[6] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic IR
approach for ranking of DBs query results. ACM TODS,
31(3):1134–1168, 2006.

[7] K. Church and W. Gale. Inverse document frequency (idf): A
measure of deviation from Poisson. In Proc. of the Workshop on Very
Large Corpora, 1995.

[8] R. Cornacchia and A. de Vries. A Parameterised Search System. In
Proc. of ECIR, 2007.

[9] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
DBs. In Proc. of VLDB, 2004.

[10] N. Fuhr and T. Roelleke. A probabilistic relational algebra for the
integration of IR and DB systems. ACM TOIS, 14(1):32–66, 1997.

[11] D. Hawking. Challenges in enterprise search. In Proc. of ADC, 2004.
[12] D. Hiemstra and V. Mihajlovic. A DB approach to IR: The

remarkable relationship between language models and region
models. Technical Report arXiv:1005.4752, 2010.

[13] I. Klampanos, H. Azzam, T. Roelleke: A case for probabilistic logic
for scalable patent retrieval. In Proc. of the workshop on Patent
information retrieval, 2009.

[14] J. Kim, X. Xue, and W. Croft. A probabilistic retrieval model for
semistructured data. In Proc. of ECIR, 2009.

[15] C. Li, K. Chen-Chuan Chang, I. Ilyas, and S. Song. RankSQL: Query
algebra and optimization for relational Top-k queries. In
Proc. SIGMOD, 2005.

[16] P. Mika, E. Meij, and H. Zaragoza. Investigating the semantic gap
through query log analysis. In Proc. of ISWC, 2009.

[17] A. Motro. Vague: A user interface to relational DBs that permits
vague queries. ACM Trans. on Office Information Systems,
6(3):187–214, 1988.

[18] J. Ponte and W. Croft. A language modeling approach to IR. In
Proc. of SIGIR, 1998.

[19] C. Ré and D. Suciu. Materialized views in probabilistic DBs: for
information exchange and query optimization. In Proc. of VLDB,
2007.

[20] S. Robertson. Understanding inverse document frequency: On
theoretical arguments for idf. Journal of Documentation,
60:503–520, 2004.

[21] S. Robertson, S. Walker, and M. Hancock-Beaulieu. Large test
collection experiments on an operational interactive system: Okapi at
TREC. IP&M, 31:345–360, 1995.

[22] T. Roelleke, H. Wu, J. Wang, and H. Azzam. Modelling retrieval
models in a probabilistic relational algebra with a new operator: The
relational Bayes. VLDB Journal, 17(1):5–37, January 2008.

[23] S. Sakr and G. Al-Naymat. Relational processing of rdf queries: a
survey. SIGMOD Rec., 38(4):23–28, 2009.

[24] M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile
query engine for TopX search. In Proc. of VLDB, 2005.

