
Noname manuscript No.
(will be inserted by the editor)

Thomas Roelleke · Hengzhi Wu · Jun Wang · Hany Azzam

Modelling Retrieval Models in a Probabilistic Relational Algebra
with a new Operator: The Relational Bayes

Received: 15 September, 2006 / Accepted: 11 June, 2007

Abstract This paper presents a probabilistic relational
modelling (implementation) of the major probabilistic re-
trieval models. Such a high-level implementation is useful
since it supports the ranking of any object, it allows for
the reasoning across structured and unstructured data, andit
gives the software (knowledge) engineer control over rank-
ing and thus supports customisation.

The contributions of this paper include the specification of
probabilistic SQL (PSQL) and probabilistic relational alge-
bra (PRA), a new relational operator for probability estima-
tion (the relational Bayes), the probabilistic relationalmod-
elling of retrieval models, a comparison of modelling re-
trieval with traditional SQL versus modelling retrieval with
PSQL, and a comparison of the performance of probability
estimation with traditional SQL versus PSQL.

The main findings are that the PSQL/PRA paradigm allows
for the description of advanced retrieval models, is suitable
for solving large-scale retrieval tasks, and outperforms tradi-
tional SQL in terms of abstraction and performance regard-
ing probability estimation.

Keywords Probabilistic relational modelling· Retrieval
Models· Probabilistic databases· DB+IR integration

1 Introduction

The call for a VLDB special issue on integration of DB
(Databases) and IR (Information Retrieval) itself is probably
the best evidence of a new era of DB+IR technology. What
is triggering DB+IR? The call mentions the usual suspects
such as XML, the web, and huge amounts of data. Maybe
the integration of structured and unstructured data sources

Thomas Roelleke· Hengzhi Wu· Jun Wang· Hany Azzam
Queen Mary, University of London
Mile End Road, London, E1 4NS
United Kingdom
Tel.: +44 (0)20 7882 7988
Fax: +44 (0)20 8980 6533
E-mail:{thor,hzwoo,wangjun,hany}@dcs.qmul.ac.uk

is what drives integrated DB+IR? However, as the call says,
early DB+IR attempts date back to early 70s.

Despite a similar overall aim, namely to process queries
and retrieve results, the fields of DB and IR research devel-
oped differently and in separate communities. DB focused
on expressiveness, structure (data records), and data models,
whereas IR focused on free-text query languages, unstruc-
tured data, and the inverted list as the ultimate “data model”
for large document collections. Whereas in DB, software
engineering and productivity issues have always been im-
portant, these are of secondary priority in IR research: an
improvement in retrieval quality is good, whatever the ap-
proach and effort in person-years needed to achieve the im-
provement. Whereas DB usually targets people who build
systems or business applications, and therefore, DB had to
provide a useful and, overall, re-usable and generic technol-
ogy, IR focused mainly on experimental evaluation of re-
trieval quality and end-user applications.

We could view the DB+IR efforts as a DB-Technology+IR-
Service integration. The technology is strong in flexibility,
robustness, abstraction, and the service is strong in ranking
and presenting retrieved objects, i.e. documents and facts.

To conclude why DB+IR, and why now, we believe that the
growing need for customisable (“tunable”) search services
triggers the demand for DB+IR. For building efficiently ef-
fective search systems, IR approaches need to be available
in DB technology, and, the other way round, DB technol-
ogy needs to be ready to host IR methods such as relevance-
based ranking, result browsing, and vague predicates.

Figure 1 highlights the current trend along a time-line from
all-in-one applications in the 70s/80s to three-tier architec-
tures becoming the standard in the late 80s. Certainly, more
tiers can be identified in today’s IT systems, depending on
the emphasis. Certainly, business logics have a complex
structure, as the underlying data management systems have.

In the classical three-tier architecture, information manage-
ment (search logic, relevance-based ranking) is maybe best
located at the interface between business logic and DB sys-
tem, where nowadays SQL has its dominating role. In the



2 Thomas Roelleke et al.

Interface

User

Interface

User

Business

Logic

Business

Logic

SQL

Ranking

Information

Application

all−in−one

Data

four−tier

Data

three−tier

"all−in−one"

Fig. 1 Data and information independence

Probability estimation: Bayes[]()

Physical
layer

Relational model/algebra; SQL

Probabilistic relations

Information sorted by relevanceExternal
layer

Logical
layer

Fig. 2 External, logical and physical layers

four-tier architecture, we leave it intentionally open whether
SQL still plays its role as it used to, or whether it plays a new
role. It will play a role, but the evaluation of SQL might be
richer, more effective, in the sense that only the important
tuples are returned to the business logic, the tuples will be
sorted by relevance, and for this, the business logic needs to
be able to specify what it means by “relevance”.

As we will demonstrate in this paper, traditional SQL is al-
ready suitable to fulfill such task, like an assembler language
is capable of developing an accounting program with a web
interface. Though capable, for obvious reasons, the appli-
cation programmer prefers a higher level and more tailored
language than assembler. This highlights the motivation for
our research: We are working on data models and SQL vari-
ants that are tailored to information management tasks.

To position the probabilistic SQL (PSQL) and the proba-
bilistic relational algebra (PRA) presented in this paper,con-
sider figure 2. There is an external layer where information
can be accessed, sorted by relevance. Then, there is a logical
layer in which the information space and retrieval strategies
(ranking functions) are modelled. Finally, there is a physi-
cal layer, which is here the relational model/paradigm. Al-
though the traditional relational paradigm has all the expres-
siveness needed (like an assembler language has all the ex-
pressiveness needed), to improve the productivity in devel-
oping information management/search applications, we add
the logical and the external layers.

database

Non−probabilistic Bayes

database

Probabilistic

Fig. 3 Creation of probabilistic databases

This paper deals with the logical layer, and more precisely,
the paradigm of probabilistic relations, probability aggre-
gation and estimation, and the probabilistic relational mod-
elling of retrieval models. Probabilistic database modelsare
well established, and we will review prior research in the
next section. Our contribution is the formalisation and high-
level implementation of retrieval models. This supports the
customisation of search strategies. For implementing re-
trieval models solely by means of a probabilistic relational
model, we required and developed a new operator, the rela-
tional Bayes. With the Bayes operator, probability estima-
tion is nowwithin the probabilistic relational paradigm.

This contribution is highlighted in figure 3. The relational
Bayes allows to describe the estimation/generation of prob-
abilities from a non-probabilistic database - an important
functionality for generating probabilities in a coherent and
comprehensive probabilistic relational algebra.

1.1 Outline of this Paper

The outline of the paper is as follows:

2 Background
3 Running example
4 Requirements
5 Probability aggregation
6 Probability estimation: The relational Bayes
7 Probabilistic relational modelling of retrieval models
8 Evaluation
9 Frequently asked question
10 Summary and conclusions

The sections can be grouped and described as follows:

Part 1: This general part contains background, running ex-
ample, and requirements.

Part 2: This technical part introduces PSQL (probabilistic
SQL) and PRA (probabilistic relational algebra). Sec-
tion 5 deals with probabilityaggregation; this can be
considered as a review of state-of-the-art PRA. Section 6
adds probabilityestimation(the relational Bayes) to the
probabilistic algebra.

Part 3: Section 7 shows the modelling of retrieval models in
PSQL and PRA.

Part 4: Section 8 evaluates PSQL/PRA. For this, we com-
pare PSQL with traditional SQL, and demonstrate the
gain in abstraction, while showing that there are effi-
ciency gains as well.

Part 5: Sections 9 and 10 conclude the paper.



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 3

2 Background

2.1 IR with SQL

Over the past two decades attention has grown towards the
integration of IR ranking techniques into SQL. In fact, it
has been labelled as one of the major challenges facing the
community nowadays [AAB+03]. While one of the earliest
efforts to address this integration date back to [SP82] and
[CP87], more recent work can be found in [GFHR97] where
the classical relational model is used to achieve basic inte-
gration of structured data and text. Specifically, the Boolean
retrieval model is implemented using standard SQL. Other
systems that implemented the same model are DBXplorer
[ACD02] and DISCOVER [HP02]. Both retrieval systems
are built on two different commercial databases, but rely on
a similar architecture to support keyword search.

Unlike [ACD02] and [HP02], [HGP03] is not just capable of
supporting Boolean-AND semantics, but also Boolean-OR
semantics. However, more effective retrieval models, liketf-
idf (term frequency - inverse document frequency) can be
implemented. For example, [GBS01,GBS04] introduce the
PowerDB-IR system, which is an IR system built on top of
a database cluster. It implements the tf-idf-based model by
mapping it to SQL. Furthermore, [ACDG03] attempts to ap-
ply IR models on database to resolve the “Empty Answer”
problem by extending the IR-based tf-idf concepts and de-
veloping an idf similarity for database ranking.

Conversely, [CDHW04,CDHW06] attempt to solve the
“Many-Answers” problem by using probabilistic ranking
of query results, which is another approach for ranking in
databases. This approach will be further discussed in the
next subsection. [LCIS05] introduces RankSQL, which is
a RDBMS that fully integrates ranking support as a first-
class functionality. A framework is introduced to support ef-
ficient evaluations of top-k by extending relational algebra
and query optimisation. This approach is different from the
typical DB and IR approach because it does not focus on
how to rank tuples (apply IR models), but focuses on opti-
mising the returned ranked-list of the results.

A re-innovated look at the integration of structured data and
text can be found in [CRW05], which provides a deeper un-
derstanding of the requirements and possible system archi-
tectures to achieve such an integration. Moreover, the impor-
tance of the probabilistic approach for DB+IR integration is
emphasised in this work.

Finally, a benchmark for the evaluation of traditional ap-
proaches for the integration of IR with SQL has been in-
troduced in [EDR05]. The benchmark, called the TEX-
TURE Benchmark, introduces queries with relevance rank-
ing, like text-only queries, single-relation mixed queries and
multiple-relation mixed queries, rather than those that just
compute all answers. Most importantly, the queries are for-
mulated using the “CONTAINS” operator. This operator en-
ables the seamless integration of text and relational pro-

cessing with top-k ranking. In addition to presenting the
benchmark, the performance numbers for three commer-
cial DBMSs and their support for text in current relational
database systems are analysed.

2.2 Probabilistic Databases

The research efforts towards the integration of DB and IR
has led to important findings in the area of probabilis-
tic database technology. It was quickly realised that prob-
abilistic data models are essential for this integration be-
cause of their capability of introducing more efficient re-
trieval models in DB. Consequently, it became possible to
measure imprecision in large-scale data, return top-k results
subset instead of the whole set of results and make use of
early response algorithms possible. Accordingly, probabilis-
tic databases conveyed a message that the overall quality of
data has been improved, and the processing time for queries
has drastically decreased by returning top-k results subset.

Early work extending relational and object oriented data
models using the fuzzy set and the possibility theory was
[BGH88]. The notion of quality of databases and its es-
timation using a probabilistic approach was discussed in
[Mot88], where the relational model of data was extended
and a quality specification with each relation instance was
associated.

Another crucial aspect of probabilistic databases is related to
efficient query evaluation. This aspect has been discussed in
[DS04], where a system is discussed that supports arbitrar-
ily complex SQL queries on probabilistic databases and pro-
vides an optimisation algorithm that can efficiently compute
most queries. In addition, a tutorial, Foundations of Prob-
abilistic Answers to Queries given by Suciu and Dalvi at
SIGMOD’05 illustrates a set of probabilistic query answer-
ing techniques that underlie several recent database appli-
cations [DS05]. One of these applications is discussed in
[AR06] where using probabilistic databases coupled with re-
laxed query expressions is suggested as a promising solution
for efficient retrieval of large-scale semantic data.

Finally, below is an example adapted from [SD05], which
demonstrates the usage of probabilities in databases. Con-
sider the following table of person data where for the persons
Miklau and Bala, we are uncertain about their affiliation and
state:

Student
Name Affiliation State Area
Miklau UW WA Data Security
Miklau Umass MA Data Security
Dalvi UW WA Prob. Data
Bala UW WA Data Streams
Bala MIT MA Data Streams
Bala Umass MA Data Streams

If {Name} is viewed to be the key, then the key condition is
violated because of the multiple occurrences (inconsistency)
of tuples with the same key.



4 Thomas Roelleke et al.

For the query

SELECT * FROM Student WHERE State = ’WA’;

we could either retrieve the consistent tuples only, or be
softer (ready to accept false hits), and retrieve inconsistent
tuples as well.

For quantifying the inconsistency in a probabilistic way, an
intuitive approach is to assign probabilities based on the
number of inconsistent tuples:

Student
Prob Name Affiliation State Area
0.5 Miklau UW WA Data Security
0.5 Miklau Umass MA Data Security

1 Dalvi UW WA Prob. Data
0.33 Bala UW WA Data Streams
0.33 Bala MIT MA Data Streams
0.33 Bala Umass MA Data Streams

As we will point out in section 6 on probabilistic SQL, the
approach mentioned above is one way of estimating prob-
abilities. We also define in this paper the notion of evi-
dence key: here,{Name} forms the evidence key, and the
tuple probabilities are conditional probabilities of the form
P (τ |Name).

We have reviewed a number of approaches dealing with
probabilistic relations. One of the contributions of this pa-
per is to define and evaluate a probabilistic SQL technology
for large-scale probabilistic databases.

2.3 On Probabilistic Relational Algebra and Probability
Estimation

The relational algebra, the processing basis of SQL, is one
of the pillars of database technology. However, from an
IR and uncertainty management point of view, the rela-
tional algebra lacks relevance-based ranking of retrievedob-
jects. Therefore, many probabilistic extensions for the rela-
tional algebra have been defined: see [CP87] on probabilistic
databases, [Mot88,Mot90,Fuh90,BP94] on vague queries
(fuzzy predicates), [BGMP90] and [BGMP92] on proba-
bilistic relational modelling, [Lee92] on probability aggre-
gation, [Mac91] on text retrieval and the relational model,
[FR97] on a PRA for the integration of database and in-
formation retrieval, [NJ95] and [FR96] on NF2 relations,
[Fuh95] on probabilistic Datalog, [LLRS97] on the Prob-
View system, [GF98] on text retrieval with SQL, and [RR02]
on probabilistic aggregates.

One may wonder why did so many researchers looked at the
problem of adding probabilities to the relational databases?

This is due to the fact that probabilistic relational algebra
(PRA) is a powerful candidate for modelling intrinsic uncer-
tainty of knowledge. Eventually, this can be used for mod-
elling an estimate of the relevance of retrieved objects. How-
ever, most of the aforementioned models share at least two

short-comings. The initial probability estimation is modelled
“outside” of the algebra, and, the “how” of the aggregation
of uncertainty values is specified. The “outside” nature of
the probability estimation was viewed by designers and de-
velopers, who used PRA, Datalog and other languages, as a
shortcoming. Also, if a model allows to specify the “how”
of the aggregation of uncertainty values, then we model on a
physical (assembler-like) layer rather than on a logical layer.

Previous works ([BGMP90], [Lee92] and [FR97]) define
variants of PRA where the focus is on the definition of the
probability aggregationfor the five basic relational oper-
ators (selection, projection, join, union, subtraction);with
the Bayes operator, this paper adds probabilityestimation.
Probability estimation is with Bayes “inside” PRA. Bayes
provides ways to specify the “what” of frequency-based and
information-theoretic probability estimation. The “how”is
controlled in the physical layer of PRA.

An important aspect of a PRA is highlighted by [RR02]: At-
tribute value aggregation (sum, average, maximum) isor-
thogonalto probability aggregation! This stresses again that
the aggregation of uncertainty values shouldnot be imple-
mented in a logical layer of a PRA.

Another aspect of PRA is the discussion of 1NF versus
NF2 (non-first-normal-form) nature of probabilistic rela-
tions. This discussion is closely related to the discussion
whether a probability is assigned to a tuple, or whether a
probability is assigned to an attribute value (see [NJ95],
[FR96], and [RR02]). NF2 relations are expensive in pro-
cessing and the experience with the 1NF PRA proved that
NF2 modelling is not a pre-requisite for effective usage of a
PRA model.

2.4 Retrieval Models

Retrieval models form a crucial part of information
retrieval. We mainly distinguish between two classes:
non-probabilistic and probabilistic models. On the non-
probabilistic side, tf-idf is the dominant model, and on the
probabilistic side, the binary independent retrieval model
and language modelling are the main candidates. Probabilis-
tic models come with a theory and some heuristics, whereas
non-probabilistic models are mainly based on heuristics.

Probabilistic models date back to [MK60]. Probabilistic
models try to estimate the probability of a document being
judged relevant to a particular query. This is denoted as the
probability of relevanceP (r|d, q). Because there is no di-
rect quantitative method to estimate the relevance probabil-
ity, there are various methods to estimate the relevance prob-
ability. In the late 70s, [RSJ76] established the Binary Inde-
pendent Retrieval Model (BIRM). From the middle to end
80s, [vR86] initiated approaches to model IR as the prob-
ability P (d → q) of a non-classical implication between
documents and queries. Early 90s brought the inference net-
work model [TC90], middle 90s contributed theP (d → q)



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 5

Person
Name City Nationality
Peter London German
Paul London Irish
Mary London Irish
Thomas Dortmund German
Thomas London German
Thomas Hamburg German
Hany London Egyptian
Hany London Polish
Jun London Chinese
Zhi London Chinese

Fig. 4 Relational table for modelling persons

framework [WY95], and late 90s to early 2000 brought lan-
guage modelling ([PC98], [BL99], [ZL02], [LZ02]) and di-
vergence from randomness ([AvR02]).

In probabilistic information retrieval models, an important
aspect is how to estimate the term weight, possibly related to
the probability of relevance. Without relevance information,
we can estimate the term weight viaidf . [CH79], [YLS82],
[Rob81], etc. have investigatedidf heuristics against the
probabilistic model. More recently, [Hie00], [Rob04], and
[RW06] highlighted relationships between the three main
classes of models: tf-idf, BIRM, and LM. In particular, the
research on the relationships of models provides input to this
paper where we model retrieval models. The work on rela-
tionships of models isolates the common components (prob-
ability estimations) in models that are the basic ingredients
for modelling retrieval models.

3 Running Example

This section contains a toy database with two tables, a ta-
ble named “Person” containing data about persons, and a
table named “Coll” representing a document collection. We
use these two tables to underline that the SQL-based and
PSQL-based implementations investigated in this paper are
of generic nature, and are not restricted to document re-
trieval.

Consider the table “Person” in figure 4. For this table, we
will show how to describe in PSQL probabilities such as
P (Nationality|City). The contribution of our paper is to add
appropriate concepts to SQL, and to prove that the estima-
tions are applicable in large-scale applications with millions
of tuples.

To illustrate the application of PSQL to the classical IR task
of text retrieval, we use the table/relation “Coll” shown in
figure 5. Our toy collection has ten tuples, four terms (sail-
ing, boats, east, coast), and five documents (doc1 to doc5).
The single horizontal lines we use in the instance (tuple) part
of a table are here to help the reader to locate the tuples that
belong to one document.

Coll
Term DocId
sailing doc1
boats doc1
sailing doc2
sailing doc2
boats doc2
sailing doc3
east doc3
coast doc3
sailing doc4
boats doc5

Fig. 5 Relational table for document retrieval

The term “sailing” occurs in four documents, “boats” occurs
in three documents, and “east” and “coast” occur in one doc-
ument. The term “sailing” occurs twice in document doc2;
otherwise, all term occurrences in documents are single oc-
currences.

A typical document retrieval task, for example, find all doc-
uments about sailing boats, can be easily expressed in SQL.
Before expressing document retrieval, we give a simple
query on “Person”, to illustrate the analogy between tradi-
tional data retrieval and document retrieval:

Find all persons of Chinese or Polish nationality.

This query expressed in SQL is as follows:

SELECT Name
FROM Person
WHERE Nationality = ’Chinese’
OR Nationality = ’Polish’;

We could also view the nationalities as query terms. Assume
we have a relation “Query(Term,QueryId)”. Then:

INSERT INTO Query VALUES
(’Chinese’, ’q1’), (’Polish’, ’q1’);

Next, we join the “Query” table with the “Person” table and
retrieve the attribute Person.Name:

SELECT Person.Name
FROM Query, Person
WHERE Query.Term = Person.Nationality;

Compare the above formulation with the next one showing
document retrieval for all documents about sailing boats:

INSERT INTO Query VALUES
(’sailing’, ’q2’), (’boats’, ’q2’);

SELECT DocId
FROM Query, Coll
WHERE Query.Term = Coll.Term;

The structures of those queries are very similar. If we had
a standard SQL++ (SQL++ stands here for a SQL with
relevance-based ranking) that sorts the retrieved tuples by
relevance, then we could easily obtain a ranked retrieval re-
sult.



6 Thomas Roelleke et al.

We will extend in section 8 on how tf-idf-based retrieval (tf-
idf is probably the most known, easy and effective ranking
method) could be implemented in traditional SQL. How-
ever, though the traditional SQL is capable of modelling
relevance-based ranking, the implementation has what can
maybe best described as an “assembler-like” feel, since we
describe in SQL the arithmetic to compute the retrieval sta-
tus values. From an abstraction point of view, and from a
probabilistic modelling point of view, this is not satisfactory.
We require a more abstract and tailored SQL++, and there-
fore we introduce and investigate in this paper a probabilistic
version of SQL.

An intuitive probabilistic approach would work with
probabilistic relations “probQuery”, “probPerson”, and
“probColl”. Let these three relations be probabilistic rela-
tions in which tuple probabilities somehow (we extend later
in the paper in detail how) reflect importance/relevance.
For example, consider a possible instantiation of table
“probColl” in the following.

probColl
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.66 sailing doc2
0.33 boats doc2
0.33 sailing doc3
0.33 east doc3
0.33 coast doc3
1.0 sailing doc4
1.0 boats doc5

The tuple probabilities here are a result of viewing{Term,
DocId} as afrequency key, and{DocId} as an - what we call
later - evidence key. Take document doc2. It has 3 tuples,
thus,1/3 = 0.33 is the base probability of each doc2 tuple.
With the frequency key (Term, DocId), two sailing tuples co-
incide, and if we add their probabilities, then we obtain the
probabilistic tuple0.66(sailing,doc2) in table “probColl”.
The double vertical line separates the probabilities from the
ordinary attribute values. The double line underlines that
probabilities are different from ordinary attribute values:
The columnProbcannot be referred to in probabilistic SQL.

The probabilities in “probColl” reflect a conditional proba-
bility denoted asP (t|d), i.e. the probability that the termt
occurs given the documentd. This probability is related to
what is known in IR astf (within-document term frequency).

Assume for now that there is an operator that produces
“probColl” from “Coll” (this is the role of the relational
Bayes, section 6). Further, assume that we can assign query
term probabilities, where the query term probabilities re-
flect the inverse document frequency (idf) of a term. Let
sailing be more frequent than boats, hence we obtain in
“probQuery” a lower probability for sailing than for boats.
Join “probQuery” and “probColl” in a probabilistic SQL en-
vironment, and we have implemented something very close
to tf-idf-based retrieval.

INSERT INTO probQuery VALUES

0.4 (’sailing’, ’q2’), 0.6 (’boats’, ’q2’);

CREATE VIEW retrieved AS
SELECT DocId
FROM probQuery, probColl
WHERE probQuery.Term = probColl.Term;

In the view “retrieved”, we obtain:

retrieved
Prob DocId

0.4 · 0.5 doc1
0.6 · 0.5 doc1

0.4 · 0.66 doc2
0.6 · 0.33 doc2
0.4 · 0.33 doc3
0.4 · 1.0 doc4
0.6 · 1.0 doc5

Remains the question of how to aggregate the non-distinct
tuples per document. A probabilistic disjunction seems rea-
sonable. For this we could argue for ‘disjoint’ (add proba-
bilities), ‘independent’ (add probabilities and subtractprob-
ability of intersections), or ‘subsumed’ (choose maximal
probability). The assumption made for the aggregation will
depend on the assumptions made when assigning (gen-
erating!) the probabilities in the relations “probColl” and
“probQuery”.

The aims of this paper are to formalise PSQL, to show the
PSQL to PRA translation, and to investigate whether we can
model state-of-the-art retrieval models in PSQL/PRA. In ad-
dition, the question is whether PSQL/PRA is scalable, and
whether we gain an efficiency advantage compared to tradi-
tional SQL.

4 Requirements

Classical approaches to probabilistic databases focus on
probabilityaggregation. They rely on “some external appli-
cation” (this is how a peer colleague referred to it) to esti-
mate initial tuple probabilities. Once the initial probabilities
are available, it appears straight-forward to define for each
algebraic operator reasonable probability aggregation func-
tions.

The main problem with this approach is that external ap-
plications estimate probabilitiesoutsideof the probabilistic
relational paradigm. Inside the classical probabilistic rela-
tional paradigm, there is no operator, no support, and no con-
trol for estimating probabilities from a non-probabilistic or
probabilistic relation!

Consider the estimation of probabilities from the non-
probabilistic relation “Coll(Term,DocId)” in figure 5. The
requirement is to assign probabilities to tuples that reflect
probabilities such asPColl(t|d), PColl(d|t), PColl(t) and
PColl(t, d), wheret is a term, andd is a document. The sub-
script of the probability function indicates the relation from
which the probabilities are generated or estimated.



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 7

Such probabilities can be estimated in various ways. One
important feature of an estimation is whether the estimation
is based on

– the tuple frequency, or
– thevalue frequency.

We illustrate the two different frequencies with some exam-
ples.

Tuple frequency: We estimate the probabilityPT,Coll(t|d),
where the subscriptT, Coll indicates that the tuples of re-
lation “Coll” form the event space. One intuitive choice to
estimate such probability is the maximum likelihood esti-
mate, namely the number ofd-tuples in whicht occurs.
For example, we havePT,Coll(sailing|doc1) = 1/2, and
PT,Coll(sailing|doc2) = 2/3, since doc1 occurs in two tu-
ples of which sailing occurs in one, and doc2 occurs in three
tuples of which sailing occurs in two.

Value frequency: We estimate the probability
PV,Coll[DocId](t), i.e. the probability thatt occurs in
the value-based event space formed by the values in
Coll[DocId]. The subscriptV, Coll[DocId] indicates the
value-based event space for the value key Coll[DocId] If
we base the estimation on the value space that is formed by
the distinct documents, then, we have five values, and we
obtain, for example,PV,Coll[DocId](sailing) = 4/5. Note
that this value frequency-based probability is different from
the tuple frequency-based probability, where we obtain
PT,Coll(sailing) = 5/10.

As we will see in section 7, both, tuple and value frequen-
cies are essential for modelling retrieval models. We con-
clude this section with a formalisation of tuple and value
frequency.

Definition 1 Tuple frequency: Let nT (τ, R) denote the tu-
ple frequency, i.e. the number oftuples(hence, theT sub-
script) in relationR, that match the partial tupleτ , where a
partial tuple is a tuple with some unspecified attribute values.

� end of definition

For example, for the partial tupleτ = (sailing, ·),
nT ((sailing, ·), Coll) = 5 is the number of tuples in relation
“Coll” that match the partial tuple(sailing, ·).

For the unspecified tuple, we obtain the number of tuples
in the relation, i.e.NT (R) := nT ((·, ·, ...), R) is the total
number of tuples in relationR.

Let h = h1 . . . hn ande = e1 . . . en be lists of attribute val-
ues. For example,h = sailing ande = doc1 are lists (lists
with just one element) of attribute values. We choseh and
e borrowing from the notion of ’hypothesis’ and ’evidence’
used in the Bayes theorem.

Then, the tuple-based probabilityPT,R(h|e) estimated based
on the tuples in relationR is defined as follows:

Definition 2 Tuple-based probability:

PT,R(h|e) :=
nT ((h, e), R)

nT ((·, e), R)
(1)

� end of definition

For example, lett be a value of the key Coll[Term], and let
d be a value of the key Coll[DocId]. Then, we obtain the
following tuple-based probability:

PT,Coll(t|d) =
nT ((t, d), Coll)

nT ((·, d), Coll)
(2)

Here,τ = (t, d) is a tuple instance, andτ = (·, d) is a partial
instance, where the centered dot means to discard the first
attribute value.

For the relation “Coll”, we obtain for ex-
ample: PT,Coll(sailing|doc2) = 2/3, since
nT ((sailing, doc2), Coll) = 2, andnT ((·, doc2), Coll) = 3.

The tuple-frequency-based probabilityP (t|d) is crucial to
IR; it corresponds to the so-called within-document term fre-
quency (tf) of a term. We refer to tuple-frequency-based
probabilities for short as tuple-based probabilities.

Another crucial probability in IR is the probabilityP (t),
namely the probability that termt occurs. Here, both tu-
ple and value frequency-based probabilities are common. As
we will see in section 7 on modelling retrieval models, the
value-based probabilityPV,Coll[DocId](t) is fundamental to
the binary independent retrieval model, and the tuple-based
probabilityPT,Coll(t) is fundamental to language modelling.

For counting the number of values with which a partial tu-
ple is associated, we need a further notation. We refer with
nV (h, R[E]) to the number of E-values (evidence values)
with which the hypothesis keyh is associated. We define the
value frequency formally, and keep the definition analogous
to the definition of the tuple frequency (see definition 1).

Definition 3 Value frequency:Let nV (h, R[E]) denote the
value frequency, i.e. the number of values in keyR[E] that
are associated with the hypothesish, whereh is a list of at-
tribute values,R is a relation name, andE is a list of attribute
names.

� end of definition

For example,nV ((sailing), Coll[DocId]) = 4 is the number
of documents (values of attribute DocId) in which sailing
occurs.

The use of upper-caseE in the definition of the value fre-
quency, as opposed to the use of lower-casee in the defi-
nition of the tuple frequency underlines thatE refers to at-
tribute names, wherease refers to attribute values.

Next, we define analogous to definition 2 the value-based
probability of a hypothesis.



8 Thomas Roelleke et al.

Definition 4 Value-based probability:

PV,R[E](h) =
nV (h, R[E])

NV (R[E])
(3)

� end of definition

For example, lett be a value of Coll[Term]. Then, we obtain

PV,Coll[DocId](t) =
nV ((t), Coll[DocId])

NV (Coll[DocId])
(4)

Compare the value-based probability above to the tuple-
based probability below:

PT,Coll(t) =
nT ((t, ·), Coll)

NT (Coll)
(5)

The difference between tuple-based and value-based proba-
bilities is illustrated for the attribute Coll[Term] in thefol-
lowing table:

Term Probabilities
tuple-based value-based

sailing 5/10 4/5
boats 3/10 3/5
east 1/10 1/5
coast 1/10 1/5

We have discussed the requirements on probability estima-
tion in general, thereby relating the discussion and examples
to the probabilities typically required by retrieval models.
Before we develop in section 6 the means to describe prob-
ability estimation in the probabilistic relational framework,
we look in the next section at probability aggregation.

5 PSQL and PRA: Probability Aggregation: Classical
Operators

In this section, we present PSQL and PRA. We include the
basic and composed operators, and show how probability ag-
gregation works.

5.1 Basic Operators

For the basic operators, we present the syntax in sec-
tion 5.1.1, the translation of PSQL to PRA in section 5.1.2,
and the semantics of the basic PRA operators in sec-
tion 5.1.3.

5.1.1 Syntax of PSQL and Basic PRA

This section presents the formal definition of the syntax of
basic PSQL and PRA. The syntax of PSQL is very similar

to the syntax of classical SQL, apart from few minimal ex-
tensions. For example, in the PSQL SELECT statement, one
can specify theaggregation assumptionwhich is one of ‘dis-
joint’, ‘independent’, or ‘subsumed’. Consider the specifica-
tion of the PSQL syntax in figure 6. Terminal symbols are in-
dicated by single quotes. We present the SELECT statement
only, which is sufficient for the purpose of this paper.

psqlSelect ::= ‘SELECT’ aggAssumption sqlTargetList
‘FROM’ relationList
‘WHERE’ sqlCondition

aggAssumption ::= assumption
assumption ::= ‘disjoint’| ‘independent’| ‘subsumed’
sqlTargetList ::=... as in SQL ...
relationList ::=... as in SQL ...
sqlCondition ::=... as in SQL ...

Fig. 6 Basic PSQL Syntax

For processing PSQL, PSQL is translated to PRA, and this
translation constitutes the semantics of PSQL. Figure 7
shows the PRA syntax, and the semantics of the PRA ex-
pressions (PRAE: probabilistic relational algebra expres-
sion) will be defined after the PSQL to PRA translation.

prae ::= Selection| Projection|
Product| Union | Subtraction

Selection ::= ’Select’ ’[’ praCondition ’]’ ’(’ prae ’)’
Projection ::=

’Project’ assumption ’[’ praTargetList ’]’ ’(’ prae ’)’
Product ::= ’Multiply’ assumption ’(’ prae ’,’ prae ’)’
Union ::= ’Unite’ assumption ’(’ prae ’,’ prae ’)’
Subtraction ::= ’Subtract’ assumption ’(’ prae ’,’ prae ’)’

Fig. 7 PRA Syntax

This syntax shows that basic PRA is — apart from the
non-terminal “assumption” — structured as traditional (non-
probabilistic) relational algebra.

5.1.2 Translation of PSQL to Basic PRA

Figure 8 illustrates the translation of PSQL to PRA,
and figure 9 shows an example. The example matches a
query index Query(Term,QueryId) against a document in-
dex Coll(Term,DocId).

The illustration and the example underline that the trans-
lation works very much as usual. The only difference
is the probabilistic assumption: The aggregation assump-
tion “aggAssumption” becomes the assumption of the
algebraic projection that “selects” the target attributes
specified in the SQL SELECT statement. The sqlSe-
lect is translated into an algebraic expression of the
form Project[...](Select[...](Multiply(...))), where the alge-
braic ‘Select’ captures the sqlCondition, and the algebraic
‘Project’ “selects” the target attributes. In the paper, upper



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 9

-- PSQL
SELECT aggAssumption sqlTargetList
FROM ...
WHERE sqlCondition;

# PRA
Project aggAssumption[praTargetList](

Select[praCondition](
Multiply(Multiply(...));

# The Multiply(...) expression captures the
# relations in FROM ...

Fig. 8 Illustration of the translation of PSQL to PRA

-- PSQL example
SELECT DISJOINT

QueryId, DocId
FROM Query, Coll
WHERE Query.Term = Coll.Term;

# PRA of the PSQL example
Project disjoint[$2,$4](
Select[$1=$1](

Multiply(Query, Coll)));

Fig. 9 Example of the translation of PSQL to PRA

case “SELECT” indicates a PSQL statement, whereas “Se-
lect” indicates the PRA operator.

5.1.3 Semantics of Basic PRA Operators

A probabilistic relational algebra expression (PRAE) yields
a probabilistic relation. A probabilistic relation is a pair
(T, P ), whereT is a set of tuples andP is a probability
functionP : T → [0; 1], i.e.P maps each element (tuple) of
T to a value (probability) of the interval[0; 1].

Some may view the specification ofP andT redundant, in
the sense that we could viewT as the set of tuplesτ with
P (τ) > 0. However, tuples with probability equal to zero
are in a relation, i.e..τ ∈ T holds, and this is different
from tuples that are not in a relation. As a first example
of the meaning of zero probability tuples, consider a rela-
tion that contains terms, and the tuple (term) probability re-
flects the percentage of documents in which the term occurs.
The term space might contain terms that do not occur in any
document. By simply discarding zero probability tuples, we
would loose information. For example, we will point out for
the relational Bayes how to compute a notion of “being in-
formative”. A term that occurs in all documents is not infor-
mative, i.e. in the occurrence-based term space, such a term
has a probability of1.0 (occurs in all documents), whereas
in the informativeness-based term space, such a term has
the probability0.0. Therefore, we distinguish between tu-
ples with probability zero, and tuples that are not part of a
relation.

Before we define the relational operators, consider figure 10
illustrating the set-based meaning of the common probabilis-
tic assumptions “independent”, “disjoint” and “subsumed”.

τ_1

τ_2

τ_2
τ_2

τ_1
τ_1

Fig. 10 Assumptions: independent, disjoint and subsumed

For these three assumptions, the aggregation of probabilities
for the disjunction (union), conjunction (intersection) and
negation of events is as follows:

P (τi ∨ τj) =











P (τi) + P (τj) − P (τi) · P (τj)
if independent

P (τi) + P (τj) if disjoint
max({P (τi), P (τj)}) if subsumed

P (τi ∧ τj) =







P (τi) · P (τj) if independent
0 if disjoint
min({P (τi), P (τj)}) if subsumed

P (τi ∧ ¬τj) =



























P (τi) · (1 − P (τj)) if independent
P (τi) if disjoint
P (τi) − P (τj) if subsumed∧

P (τi) > P (τj)
0 if subsumed∧

P (τi) ≤ P (τj)

Next, we formalise the five basic relational operators. The
definitions are composed as follows: Each definition starts
with an assignment of the form(T, P ) = syntactic PRAE,
where (T, P ) is a probabilistic relation (set of tuples and
probability function), and the right side is a syntactic form of
the respective relational algebra expression. The definitions
for T andP give the semantics of the PRAEs. Relational
operators are applied to arguments (probabilistic relations),
and we use “a” and “b” to refer to the argument relations.

We start with the definition of the selection.

Definition 5 Selection:

(T, P ) = ‘Select’[condition](a)

T := {τ |τ ∈ Ta ∧ ϕ(τ)}

P (τ) := Pa(τ)

Here,ϕ represents the semantic truth value function that cor-
responds to the syntactic “condition” in the selection.

The probabilistic relation(T, P ) is the result of the selection,
and(Ta, Pa) is the probabilistic relation of the argument re-
lation “a” of the selection.

� end of definition

For example, Select[$1=sailing](Coll) is a selection on the
relation “Coll”, and the tuples with “sailing” in their first
column are selected.



10 Thomas Roelleke et al.

This first definition does not manipulate the probabil-
ities of the selected tuples. However, there are cases
where a selection generates probabilities. For example, con-
sider a vague selection such as Select[$price IS LOW
& $mileage IS LOW](cars). Here, “IS LOW” is a vague
predicate. Vague predicates (also referred to as vague
selections) generate probabilities. This is the field of
Fuzzy SQL. Fuzzy SQL can be expressed in probabilis-
tic relational modelling. The expression Select[$price IS
LOW](cars) could be viewed as a composed operation Se-
lect[](Join[$price=$price](cars,lowPrice). The empty condi-
tion of the selection indicates that this modelling of a vague
predicate can be viewed as a complex condition pushing,
where the vague predicate leads to a join expression join-
ing cars with a probabilistic relation “lowPrice” to model
the probability that a price is low. The modelling of vague
predicates is discussed in [FR97].

Next, we define the projection, an operation that performs
probability aggregation. The definition highlights an impor-
tant difference to the work in [FR97]. The probabilistic as-
sumption for specifying the probability aggregation is asso-
ciated with thealgebra operation, whereas in [FR97], the
probabilistic assumption is associated with each tuple, this
being achieved by assigning so-called event-expressions to
tuples. The event expressions allow for a delayed probabil-
ity computation, and, overall, they allow for an intensional
semantics of the probability computation. These are pow-
erful features. However, the intensional case leads to scal-
ability problems, since complex event expressions have to
be transformed into disjunctive normal form. Therefore, in
most applications, we apply extensional semantics. For the
scope of the algebra variant we discuss here, we work with
extensional semantics, i.e. each algebra expression directly
aggregates probabilities.

We give next the definition of the probabilistic projection
where the assumption is a parameter of the operator.

Definition 6 Projection:

Let τ = τ ′[i1..in] be a tuple composed of the attribute values
at columns (positions)i1..in in tupleτ ′.

Let Ta(i1..in) be the set of tuples of relation “a” that share
the same attribute values at columnsi1..in.

(T, P ) = ‘Project’ assumption[praTargetList](a)

T := {τ |τ = τ ′[i1..in] ∧ τ ′ ∈ Ta}

P (τ) :=























∑

τ∈Ta(i1..in) Pa(τ) if assumption=‘disjoint’
1 −

∏

τ∈Ta(i1..in)(1 − Pa(τ))

if assumption=‘independent’
max({Pa(τ)|τ ∈ Ta(i1..in)}

if assumption=‘subsumed’

If no praTargetList is specified, i.e. Project assumption(a),
then this is equivalent to the praTargetList that contains all
attributes of the argument relation “a”.

� end of definition

For example, assume the following relation to be given:

docFreqSpace
Prob Term DocId

0.2 sailing doc1
0.2 boats doc1
0.2 sailing doc2
0.2 boats doc2
0.2 sailing doc3
0.2 east doc3
0.2 coast doc3
0.2 sailing doc4
0.2 boats doc5

The relation has a constant tuple probability reflecting the
probability to draw a document from the document space
(the set of five documents). We show the relational descrip-
tion of the probabilistic relation “docFreqSpace” based on
the non-probabilistic relation “Coll” in section 6, when we
have the relational Bayes defined.

The PRAE “Project disjoint[$1](docFreqSpace)” projects on
the first column and forms the sum of non-distinct tuples that
coincide in the disjoint projection. We obtain the following
probabilistic relation:

dfTermSpace = Project disjoint[$1](docFreqSpace)
Prob Term

0.8 sailing
0.6 boats
0.2 east
0.2 coast

In the probabilistic relation “dfTermSpace”, the probability
of a term can be interpreted as the probability that the term
occurs in a document of the collection. This is a value-based
probability (see definition 4), where here value-based corre-
sponds to document-based. This demonstrates that the tra-
ditional IR notion ofdocument frequency (df)translates to
the more general notion ofvalue frequency (vf)in the rela-
tional framework, where any set of attributes can be defined
to form thevalue keyon which the value frequency is based.
The generalised notion of value-based versus document-
based, and the value-based versus tuple-based probabili-
ties play an important role when modelling retrieval models
(section 7).

For the binary operators product, union, and subtraction, we
only give in the following the definitions.

Definition 7 Product:

(T, P ) = ‘Multiply’ assumption(a,b)

T := {τ |τa ∈ Ta ∧ τb ∈ Tb ∧ τ = [τa, τb]}

P (τ) :=



















0 if assumption=‘disjoint’
Pa(τa) · Pb(τb)

if assumption=‘independent’
min({Pa(τa), Pb(τb)})

if assumption=‘subsumed’

� end of definition



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 11

Definition 8 Union:

(T, P ) = ‘Unite’ assumption(a,b)

T := {τ |τ ∈ Ta ∨ τ ∈ Tb}

P (τ) :=



















Pa(τ) + Pb(τ) if assumption=‘disjoint’
Pa(τ) + Pb(τ) − Pa(τ) · Pb(τ)

if assumption=‘independent’
max({Pa(τ), Pb(τ)})

if assumption=‘subsumed’

� end of definition

Definition 9 Subtraction:

(T, P ) = ‘Subtract’ assumption(a,b)

T := {τ |τ ∈ Ta}

P (τ) :=



















Pa(τ) if assumption=‘disjoint’
Pa(τ) · (1 − Pb(τ))

if assumption=‘independent’
max(Pa(τ) − Pb(τ), 0)

if assumption=‘subsumed’

� end of definition

The definitions of product and subtraction raise an interest-
ing theoretical (and philosophical) issue since tuples with
probability zero or even negative probabilities may be pro-
duced.

For example, in a subsumed subtraction, givenPa(τ) <
Pb(τ), we might obtainP (τ) < 0 in the result if we sim-
ply subtract probabilities. The illustration of the assump-
tion “subsumed” in figure 10 shows that the interpretation
of a subtraction as the Boolean combination “AND NOT”
leads toP (τ) = 0 if Pa(τ) ≤ Pb(τ). Therefore, we de-
fine a subsumed subtraction to have the positive probability
P (τ) := max(Pa(τ) − Pb(τ), 0). Thus, we have no opera-
tion or aggregation that generates negative probabilities.

Regarding zero probabilities, the aggregation is well defined
for all operations. An intuitive optimisation idea is to dis-
card tuples with probability zero. However, from an infor-
mation point of view, the information that a tuple is in a
relation with probability zero is different from the informa-
tion that a tuple is not in a relation. This will become even
more evident when we apply the relational Bayes for gen-
erating informativeness-based probabilities, where a zero
probability tuple tells us that an attribute value (for example,
“sailing” is an attribute value) is not informative, i.e. that it
occurs in all elements of the event space (tuples or values,
where, for example, documents are values).

To conclude this section with an example involving several
algebra expressions, we return to our running example on
document retrieval.

Query
Term QueryId
sailing q1
boats q1
sailing q2
boats q2
east q2
coast q2
... ...

Coll
Term DocId
sailing d1
boats d1
sailing d2
sailing d2
boats d2
... ...

From this, we obtain a probabilistic representation of queries
and documents (the next section explains how the probabil-
ities would be generated). For example:

probQuery
Prob Term QueryId

0.5 sailing q1
0.8 boats q1
0.5 sailing q2
0.8 boats q2
1.0 east q2
1.0 coast q2
... ... ...

probColl
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.66 sailing doc2
0.33 boats doc2

... ... ...

In “probQuery”, the probabilities might reflect the dis-
criminativeness of a term: sailing is frequent, boats is
less frequent, and east and coast are rare. Probabilities in
“probColl” are based on the within-document term occur-
rence.

Given these probabilistic representations of queries and doc-
uments (collection), we can now formulate a retrieval strat-
egy (ranking function) as follows:

-- PSQL
CREATE VIEW retrieve AS
SELECT DISJOINT QueryId, DocId
FROM probQuery, probColl
WHERE probQuery.Term = probColl.Term;

The translation of the PSQL statement to PRA yields:

# PRA
retrieve =
Project disjoint[$2,$4](

Select[$1=$1](
Multiply(probQuery, probColl)))

We have defined the five basic operators, including PSQL
and PRA examples. In the next section, we define the main
composed operators, namely join and division.

5.2 Composed Operators

There are a number of composed operators that are equiv-
alent to an expression involving the basic operators. In this
paper, we emphasise the following points:

1. The composed operators of classical relational algebra
apply in the probabilistic case as well.

2. The division operator does not divide probabilities.



12 Thomas Roelleke et al.

An important composed operator is the join, basically a
product allowing for the specification of a condition:

Join assumption[joinCondition] (a,b) :=
Select[selectCondition](

Multiply assumption (a,b))

The definition shows, that the conditional join is viewed to
be equivalent to a selection on the product of two relations.
The conditional join is important since it is more elegant
to use, and more efficient to compute than its decomposed
equivalent. For example, consider the join of “Query” and
“Coll” over the attribute “Term”:

Join[$1=$1](Query, Coll) :=
Select[$1=$3](Multiply(Query, Coll))

The example illustrates that the column specification in
the join condition and select condition are different. In
the join condition, the column specification is such that
the columns refer to the first and second argument of
the join, respectively, whereas in the select condition, the
columns refer to the concatenated tuple being the re-
sult of Multiply(Query,Coll). When pushing a select con-
dition to a join operation, the column specification is
adapted accordingly. We define the PRA here with column
numbers, however, we may also use expressions such as
Join[$Term=$Term](Query,Coll), given that the schema (the
attribute names) of “Query” and “Coll” are defined.

To continue the illustration of the semantics of PRAE, con-
sider the following example in which we work with a simple
relation “probQuery(Term)” that contains no QueryId, but
just terms. Further, we model a relation “probColl” with a
more diverse distribution of probabilities than used in pre-
vious examples. In “probColl”, we insert horizontal lines
to make it easier to associate tuples that belong to the same
document.

probQuery
Prob Term

0.5 sailing
0.5 boats

probColl
Prob Term DocId

0.8 sailing doc1
0.6 boats doc1
0.6 sailing doc2
0.4 boats doc2
1.0 sailing doc3

Joining “probQuery” with “probColl” yields:

resultBody = Join[$1=$1](probQuery, probColl)
Prob probQuery.Term probColl.Term DocId

0.4 = 0.5 · 0.8 sailing sailing doc1
0.3 = 0.5 · 0.6 boats boats doc1
0.3 = 0.5 · 0.6 sailing sailing doc2
0.2 = 0.5 · 0.4 boats boats doc2
0.5 = 0.5 · 1.0 sailing sailing doc3

A projection on the third column yields a relation with re-
trieved documents. Applying a disjoint projection, we ob-
tain:

result = Project disjoint[$3](resultBody)
Prob DocId

0.7 = 0.4 + 0.3 doc1
0.5 = 0.3 + 0.2 doc2

0.5 = 0.5 doc3

Here, doc1 is estimated to be the most relevant, and doc2
and doc3 are estimated to be equally relevant documents.

Alternatively, using an independent projection, the aggrega-
tion of probabilities has the effect that doc2 is viewed less
likely to be relevant than doc3, as shown below:

result = Project independent[$3](resultBody)
Prob DocId

0.58 = 0.7 − 0.4 · 0.3 doc1
0.44 = 0.5 − 0.3 · 0.2 doc2

0.50 = 0.5 doc3

This example illustrates the effect that probabilistic assump-
tions may have on the ranking.

Next, consider the division. We follow the definition to be
found in [EN00] page 224, and [SKS02] page 102, and other
comprehensive database books. Leta andb be PRAEs. Let
X ∪ Y be the attributes ofa and letX be the attributes ofb.

Divide(a,b) :=
Subtract(

Project[Y](a),
Project[Y](

Subtract(
Multiply(b, Project[Y](a)), a)))

We show the division here to underline that the division is
a composed operator, composed of the basic operators, and
the basic operators perform probability aggregation (multi-
plication, summation, min/max) of probabilities, but do not
divide probabilities (or frequencies) as this is required for
probabilityestimation. We underline this point to fully clar-
ify why the division is not capable of performing the division
of probabilities (frequencies) as it is required for probability
estimation.

Next, we move to a new, sixth operator of a probabilistic re-
lational algebra, the relational Bayes. As the name indicates,
the operator is related to Bayes’ Theorem.

6 PSQL and PRA: Probability Estimation: The
Relational Bayes

As highlighted throughout the paper, basic probabilistic re-
lational algebra provides probabilityaggregationbut lacks
the means to describe probabilityestimation. Therefore, we
introduce in this section the relational Bayes, the sixth oper-
ator of probabilistic relational algebra.

We present the relational Bayes in three steps, where
the three steps are motivated by the type of estimation
(probabilistic assumption). Section 6.1 introduces the re-
lational Bayes for the classical assumptions “disjoint”,
“independent”, and “subsumed”. Then, section 6.2 adds the
logarithmic assumptions, namely “maxlog” and “sumlog”.
The logarithmic assumptions support the estimation of what
we refer to as “informativeness-based” probabilities, as op-
posed to the “occurrence-based” probabilities obtained via



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 13

the classical assumptions. Finally, section 6.3 introduces as-
sumptions such as “maxidf” and “sum idf”. These assump-
tions correspond to complex relational Bayes expressions
and simplify PRA programs.

6.1 Classical Assumptions: Disjoint, Independent and
Subsumed

6.1.1 Syntax and Semantics of the Relational Bayes

With respect to our running example, we are looking for
a way to describe probabilities such asPColl (Term|DocId)
andPPerson(Nationality). How can we describe such prob-
abilities in PRA and PSQL, respectively?

We propose a basic probabilistic relational operator called
Bayes. Basically, Bayes divides each tuple probability (the
probabilities in a non-probabilistic relation are1.0) by an
aggregated tuple probability, which we refer to asevidence
probability. For example, the sum of all doc1 tuples can be
viewed as an evidence probability.

The formal definition of the relational Bayes is:

Definition 10 Bayes:

(T, P ) = ‘Bayes’ assumption[i1 . . . in](a)

T := {τ |τ ∈ Ta}

P (τ) :=
Pa(τ)

Pb(τ [i1 . . . in])

The key i1 . . . in is referred to as theevidence keysince
the relational Bayes generates a relation where the tu-
ple probabilities correspond to the conditional probability
P (τ |τ [i1 . . . in]).

The probabilistic relation “b” is the so-calledevidence key
projection:

b = ‘Project’ assumption[i1 . . . in](a).

If no assumption is specified, i.e. given Bayes[...](...), then
the assumption ‘disjoint’ is the default.

� end of definition

The relational Bayes performs a projection on the evidence
key. We refer to the resulting probabilities of the inner pro-
jection asevidence probabilities. The inner projection is also
referred to as evidence projection.

Given the result of the evidence projection, the relational
Bayes computes the resulting probability (conditional prob-
ability) as the division of the tuple probability and the ev-
idence probability. The division of probabilities remindsof
the division operator. However, as the definition of the re-
lational division shows, the relational division is based on
the basic operators, and no division of probabilities is per-
formed. Moreover, the relational Bayes is a basic operator,

since no other even complex operation supports the division
of probabilities.

As an example, consider the generation of a probabilis-
tic relation where the probabilities are of the nature
P (Term, DocId|DocId). In a column-based notation, we also
write such a probability asP ($1, $2|$2), i.e. the second at-
tribute forms the evidence key.

We name the relation as “tfCollSpace” (which is short
for term frequency collection space). We generate
“tfCollSpace” from the non-probabilistic relation “Coll”as
follows:

tfCollSpace = Bayes[$2](Coll)
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.33 sailing doc2
0.33 sailing doc2
0.33 boats doc2
0.33 sailing doc3
0.33 east doc3
0.33 coast doc3
1.0 sailing doc4
1.0 boats doc5

For example, consider the computation of
“0.33(sailing,doc2)”. The probability of this tuple is the re-
sult of dividing the probabilityPColl((sailing,doc2)) = 1.0
by the evidence “probability” for “(doc2)”, which is3.0
since there are three tuples with doc2. The probabilistic
semantics is0.33 = 1/10

3/10 , where1/10 is the probability
that a tuple is drawn from relation “Coll”, and3/10 is the
probability that a doc2 tuple is drawn from relation “Coll”.

Note that the relational Bayes operation preserves the non-
distinct tuples, e.g. the tuple “0.33(sailing,doc2)” occurs
twice in the result of the Bayes operation.

To aggregate the probabilities of non-distinct tuples, we ap-
ply a distinct projection, namely a disjoint projection in this
case. We obtain:

tf = Project disjoint(Bayes[$2](Coll))
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.66 sailing doc2
0.33 boats doc2
0.33 sailing doc3
0.33 east doc3
0.33 coast doc3
1.0 sailing doc4
1.0 boats doc5

The probabilities in the relation “tf” reflect the maximum-
likelihood estimate of the formn(t, d)/N(d). This linear es-
timate is an important estimate with a clear interpretation.
To underline its general meaning, consider the estimation of
a probabilistic relation withP (Nationality|City) (where we
use attribute names in the PRA expressions).

# PRA



14 Thomas Roelleke et al.

person_nationality_city =
Project disjoint(
Bayes disjoint[$city](

Project[$nationality,$city](Person)));

Despite the fact that the maximum-likelihood is intuitive,
it is known for IR that the maximum-likelihood estimate
actually proves — for text retrieval — to be inferior to a
Poisson-like (fractional) estimate where the probabilities in
“tf” are computed via the fractional estimate of the form
n(t, d)/(K + n(t, d)), wheren(t, d) is the number of(t, d)-
tuples,K is a constant to control the rise of the estimate,
e.g.K = 1. For the modelling of such a Poisson-based and
— from a text retrieval point of view —- effective retrieval
function, we either need special Bayes assumptions, or other
ways of aggregating probabilities. We will look into this re-
quirement in section 7 (modelling retrieval models).

We have described atf -based probabilityPT,Coll (t|d), and
this probability corresponds to what is in IR known as the
tf -component in atf -idf -like retrieval function.

Next we describe a tuple-based and a value-based term prob-
ability PColl (t), i.e. the probability that a termt occurs. We
refer withPT,Coll (t) to the tuple-based probability, and we
refer with PV,Coll[DocId](t) to the value-based probability.
The subscript of the value-based probability indicates theat-
tribute that forms the event space.

The tuple-based probability is essential for language mod-
elling. The value-based term probability is the input to
idf , since theidf of a term is defined asidf(t, Coll) :=
− logPColl[DocId](t).

We name the tuple-frequency-based term space
“tfTermSpace”, whereas we name the value-frequency-
based term space “dfTermSpace”.

The tuple-based relation “tfTermSpace” is defined as the dis-
joint projection on the space of disjoint collection tuples.

tfTermSpace =
Project disjoint[$Term](

Bayes disjoint[](Coll));

In the relation “tfTermSpace”, we obtain:

tfTermSpace
Prob Term

5/10 sailing
3/10 boats
1/10 east
1/10 coast

The tuple-based probability is fairly straight-forward, when
compared to the value-based probability. For the value-based
probability, we need to define a value space, and then join
the distinct collection with the value space to project on the
frequency key, so that the projection aggregates for each
frequency key (term) the probabilities of the values (docu-
ments) in which the frequency key (term) occurs.

Consider the following PRA program for describing a value-
based probability:

valueSpace =
Bayes[](Project distinct[$DocId](Coll));

distinctColl = Project distinct(Coll);

dfTermSpace =
Project disjoint[$Term](

Join[$DocId=$DocId](distinctColl,
valueSpace));

We obtain:

dfTermSpace
Prob Term

4/5 sailing
3/5 boats
1/5 east
1/5 coast

We have introduced the syntax and semantics of the rela-
tional Bayes. In addition, we have applied the relational
Bayes to create three probabilistic views:

1. View “tf(Term,DocId)” where the tuple proba-
bility is a tuple-based probability of the nature
PT,Coll (Term|DocId). This relational view explains
the generation of the previously mentioned relation
“probColl”. This tf -based relation is crucial to the two
main retrieval models, namelytf -idf and language
modelling.

2. View “tfTermSpace(Term)”, where the tuple probability
is a tuple-based probabilityPT,Coll (t). This relational
view is important for language modelling.

3. View “dfTermSpace(Term)”, where the tuple probability
is a value-based probabilityPV,Coll[DocId](t). This rela-
tional view corresponds to the relation “dfTermSpace”
introduced in section 5.1 when defining the basic opera-
tors. The value-based (document-based) term probabili-
ties are important foridf.

In the next section, we show the embedding of the relational
Bayes into PSQL.

6.1.2 Translation of PSQL to PRA with Bayes

Consider now the definition and translation of PSQL expres-
sions that support probability estimation. In PSQL, we add
two new clauses to the SELECT statement: Theevidence
key clause, and theassumption clause. Figure 11 shows the
syntax of extended PSQL (refer to figure 6 for the syntax
of basic PSQL). Terminal symbols of the syntax are set in
single quotes.

The following PRA expression shows the principle transla-
tion of a PSQL SELECT statement to PRA, which includes
evidence key or estimation assumption.



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 15

psqlSelect ::= ‘SELECT’ aggAssumption sqlTargetList
‘FROM’ relations
‘WHERE’ sqlCondition
[ ‘EVIDENCE KEY’ ‘(’ sqlEvidenceKey ‘)’ ]
[ ‘ASSUMPTION’ estAssumption ]

sqlEvidenceKey ::= targetAttributeNameList
targetAttributeNameList ::= NAME|

NAME ’,’ targetAttributeNameList
estAssumption ::= assumption

Fig. 11 Extended PSQL Syntax

# PRA
‘Bayes’ estAssumption [ praEvidenceKey ] (

‘Project’ aggAssumption [ praTargetList ] (
‘Select’ [ praCondition ] (

‘Multiply’ (...) ) ) )

The non-terminal symbols of the PSQL statement are trans-
lated into the respective PRA expressions. The sqlTargetList,
sqlCondition and sqlEvidenceKey contain attribute names,
whereas the corresponding PRA symbols may contain at-
tribute names (if the PRA layer knows the schema) or
columns.

The PSQL Select statement is translated as usual to a rela-
tional projection. If a PSQL statement contains an evidence
key clause or an assumption clause, then the relational Bayes
is applied to the result of the projection. If only an evidence
key is specified, then the assumption “disjoint” is used. If
only an estimation assumption is specified, then a Bayes
without evidence key is applied (“Bayes(...)”), which means
that the evidence key contains all attributes of the relational
argument (the projection) of the relational Bayes.

For modellingtf -idf, we lack the functionality to estimate
the probabilities that are proportional to theidf of a term.
Therefore, we introduce in the next section two new assump-
tions, maxlog and sumlog, which could be also referred to
as logSubsumed (maxlog) and logIndependent (sumlog),
to highlight their relationship to the classical assumptions.

6.2 Logarithmic Assumptions: maxlog and sumlog

In IR, a crucial concept is the so-called inverse document
frequencyidf(t, c) of a termt in a collectionc, where idf
is defined as the logarithm of a frequency-based probabil-
ity. Let P (t|c) be the probability that the termt occurs in
the documents of the collectionc. This probability is usu-
ally based on the number of documents in whicht occurs
(denoted asnD(t, c)) and the number of documents in the
collection (denoted asND(c)):

P (t|c) :=
nD(t, c)

ND(c)

idf(t, c) := − log P (t|c) (6)

As we saw in section 6.1,P (t|c) can be expressed with the
relational Bayes. However, so far, we lack the means to ex-
press a probability that is proportional toidf .

Therefore, we introduce further assumptions. Since theidf ,
the logarithm, respectively, is related to information the-
ory, we refer to these logarithmic assumptions also as
information-theoreticassumptions.

We extend in the following the definitions of Projection and
Bayes regarding the assumptions maxlog and sumlog.

Definition 11 Logarithmic Projection:

This definition extends definition 6 (Projection). Definition 6
covers only the classical assumptions ‘disjoint’, ‘indepen-
dent’, and ‘subsumed’.

P (τ) =















min({Pa(τ)|τ ∈ T (i1..in)})
if assumption=‘maxlog’

∏

τ∈T (i1..in) Pa(τ)

if assumption=‘sumlog’

� end of definition

Having defined the semantics of the logarithmic
(information-theoretic) assumptions for Project, we can
define the logarithmic Bayes, which involves an evidence
projection with a logarithmic assumption.

Definition 12 Logarithmic Bayes:

This definition extends definition 10 (Bayes). Definition 10
covers only the classical assumptions ‘disjoint’, ‘indepen-
dent’, and ‘subsumed’.

(Pb, Tb) = ‘Project’ assumption[i1, . . . , in](a)

P (τ) =
− logPa(τ)

− log Pb(τ [i1, . . . , in])

if assumption∈ {‘max log’, ‘sum log’}

� end of definition

For the logarithmic assumptions, the relational Bayes di-
vides the logarithm of the tuple probability by the logarithm
of the evidence probability, where the evidence probability
is the minimum or the product of the probabilities of the ev-
idence tuples.

For maxlog, the maximum of logarithms is equal to the log-
arithm of the minimum of probabilities:

max({− log P (τ1), . . . ,− logP (τn)}) =

− logmin({P (τ1), . . . , P (τn)})

Hence, the evidence projection Project maxlog[]() yields
the minimum of the probabilities of the coinciding tuples.



16 Thomas Roelleke et al.

For sumlog, the sum of logarithms is equal to the logarithm
of the product of probabilities:

∑

i

− logP (τi) = − log
∏

i

P (τi)

Hence, the evidence projection Project sumlog[]() yields
the product of the probabilities of the coinciding tuples.

For the Projection, maxlog corresponds to a conjunction of
subsumed events, and sumlog corresponds to a conjunction
of independent events. This is summarised in the following
table.

Assumption Evaluation in Projection
max log conjunction of subsumed events
sumlog conjunction of independent events

As an example, consider the computation of anidf -based
term space:

max idfTermSpace = Bayes maxlog[](dfTermSpace)
Prob Term

log(0.8)/ log(0.2) ≈ 0.1386 sailing
log(0.6)/ log(0.2) ≈ 0.3174 boats

log(0.2)/ log(0.2) = 1.0 east
log(0.2)/ log(0.2) = 1.0 coast

The logarithmic assumptions add an important angle to the
relational operators Projection and Bayes, since they allow
for the description of so-called informativeness probabili-
ties.

Before we conclude this section, we look at the irregularities
of the logarithmic assumptions, namelylog P (τ) is zero for
P (τ) = 1, and it is not defined forP (τ) = 0.

For maxlog and sumlog, the evidence probabilityPb(τ)
is equal to1.0 if all probabilities of the evidence tuples are
1.0, i. e. there exists no tuple probability less than1.0. This
means that all evidence is not informative, since only tuples
(signals) which occur with a probability of less than1.0 bear
any surprise, and only surprise is considered to be informa-
tive.

The evidence probability is zero if there is one zero proba-
bility among the coinciding tuples in the evidence key pro-
jection. For this case, we can assign zero to the result tuples,
sincelimP (τ)→0 − log P (τ) = ∞.

The value-based dfTermSpace (end of section 6.1) is
a complex algebra expression. Thus, applying Bayes
max log[](dfTermSpace) is clearly not the easiest expres-
sion to evaluate. Therefore, the next section introduces com-
posed Bayes assumptions named maxivf (also referred to
as maxidf) and maxitf (also referred to as maxilf). These
yield two advantages: On one hand, the algebraic expression
becomes more compact, which is welcome when modelling
in PRA. On the other hand, the composed expressions allow
for an index usage that leads to a more efficient processing
that the computation of the decomposed expressions.

6.3 Inverse Frequency Assumptions: maxivf (max idf) and
max itf (max ilf)

Reconsider the computation steps for describing the estima-
tion of an idf -based probability, where we work now with
general relations (not specific to document retrieval). We
generate an inverse-value-based (ivf -based) key space. For
this, we apply the general notions of value key and frequency
key: The value key (for text retrieval,{DocId} is the value
key), and the frequency key (for text retrieval,{Term} is the
frequency key), are used for defining the value frequency.
Let r be a relation. The steps for describing the value fre-
quency are:

1. Generate value space:

valueSpace =
Bayes[](Project distinct[valueKey](r));

2. Generate distinct tuple space:

tupleSpace = Project distinct(r);

3. Generate value frequency:

vf =
Project disjoint[freqKey](

Join[valueKey=valueKey](
tupleSpace, valueSpace));

4. Generate inverse-value-frequency-based probabilities:

max ivf = Bayes max log[](vf)

To facilitate the specification and evaluation of value-
based probabilities, we define now the maxivf rela-
tional Bayes. The maxivf Bayes requires a projection
on the frequency key to be its argument. For example,
in “Bayes maxivf[](Project[$Term](Coll))”, the “Term” at-
tribute of “Coll” is the frequency key.

The distinct collection is joined with the valueSpace to ob-
tain the base for generating the valueFrequencies (the rela-
tion “vf” in the derivation above corresponds for the relation
“Coll” to the document frequency (df)).

Bayes max ivf[](Project[freqKey](r)) :=
Bayes max log [] (

Project disjoint [freqKey] (
Join [ valueKey=valueKey ] (
Project distinct ( r ),
Bayes [] (

Project distinct[valueKey] (r)))))

Since the general concept of anivf -based probability has its
origin in the IR concept ofidf -based probabilities, we let
max idf be a synonym of maxivf.

As an example, consider theivf (inverse value (document)
frequency) of attribute “Term” in relation “Coll”:

Bayes max idf[](Project[$Term](Coll)) :=
Bayes max log[](

Project disjoint[$Term](
Join[$DocId=$DocId](
Project distinct(Coll),
Bayes[](Project distinct[$DocId](Coll))))



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 17

Here,{Term} is the frequency key, and{DocId} is the value
key.

Next, consider the generation of tuple-frequency-based in-
formativeness probabilities via the composed Bayes maxitf
operation:

Bayes max itf[](Project[freqKey](r)) :=
Bayes max log[](
Project disjoint[freqKey](Bayes[](r)))

The definition is simpler than that of maxivf, since the tuple
space generated by Bayes[](r) is direct input to the disjoint
projection over the frequency key.

This section added the relational Bayes to the basic PRA.
Now, the PRA components are the five basic operators, the
composed operators, the relational Bayes primitives (dis-
joint, independent, subsumed, maxlog, sumlog), and the
composed relational Bayes expressions (maxivf, max itf).
We have now a probabilistic relational paradigm suitable to
describe the probability aggregationandestimation required
for modelling IR models.

7 Probabilistic Relational Modelling of Retrieval
Models

We start with probabilistic variants of a simple but effective
retrieval model, known as tf-idf (section 7.1). Then, we show
the modelling of the two major probabilistic retrieval mod-
els: binary independent retrieval model (section 7.2) and lan-
guage modelling (section 7.3). In addition to the modelling
of retrieval models, we include the modelling of the most
common evaluation measure: precision/recall (section 7.4).

7.1 TF-IDF

The standard definition of thetf -idf -based retrieval status
value (RSV) is of the formRSV(d, q) =

∑

t∈d∩q tf(t, d) ·

idf(t). When investigating the implementation oftf -idf in a
probabilistic relational framework, we came across different
variants we will report in this section. For implementing the
standard form, we need to instantiate probabilistic relations
to modeltf andidf . Since we move in a probabilistic frame-
work, we need to think about a probabilistic interpretationof
tf -idf, or, at least, define probabilities that are proportional
to tf andidf , respectively. This is fairly straight-forward for
thetf component, but for theidf component, we need a log-
based normalisation and the probabilistic interpretationof
the value obtained is not obvious (see [Roe03] for a discus-
sion of the semantics of such a probability).

We illustrate in the following severaltf -idf implementations.

Consider first the PSQL script for modelling standardtf -idf -
based retrieval.

-- PSQL: standard tf-idf retrieval

-- Extensional relations:
-- Coll(Term, DocId);
-- tf_poissona(Term, Context);
-- Query(Term, QueryId);

-- within-document term frequency:
CREATE VIEW tfCollSpace AS

SELECT Term, DocId
FROM Coll
ASSUMPTION DISJOINT
EVIDENCE KEY (DocId);

CREATE VIEW tf AS
SELECT DISJOINT Term, DocId
FROM tfCollSpace;

-- Optional: Bind tf to extensional relation.
CREATE VIEW tf AS

SELECT Term, Context AS DocId
FROM tf_poissona;

-- inverse document frequency:
CREATE VIEW idf AS

SELECT Term
FROM Coll
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

-- query term weighting and normalisation:
CREATE VIEW wQuery AS

SELECT Term, QueryId
FROM Query, idf
WHERE Query.Term = idf.Term;

CREATE VIEW norm_wQuery AS
SELECT Term, QueryId
FROM wQuery
EVIDENCE KEY (QueryId);

-- retrieve documents:
CREATE VIEW std_tf_idf_retrieve AS

SELECT DISJOINT DocId, QueryId
FROM norm_wQuery, tf
WHERE norm_wQuery.Term = tf.Term;

-- Probabilistic interpretation:
-- For tf_poissona interpreted as P(d|t):
-- P(t|q) P(q) = P(q|t) P( t is informative | c )
-- RSV(d,q) = P(q) sum_t P(d|t) P(t|q)

CREATE VIEW retrieve AS
SELECT DocId, QueryId
FROM std_tf_idf_retrieve;

The PSQL script contains views for defining the probabilis-
tic relations “tf” and “idf”. For “tf”, the first two views
demonstrate how to define a maximum-likelihood estimate,
which is of the formP (t|d) = n(t, d)/N(d). This linear
estimate is outperformed by a non-linear estimate of the
form n(t, d)/(n(t, d) + K), where n(t, d) is the number
of times termt occurs in documentd, and K is a term-
independent value, which might reflect, for example, the
document length (BM25, [RWHB95]). This non-linear es-
timate can be viewed as a Poisson approximation, and the
term-document pairs with the respective probabilities are
stored in relation “tfpoissona”. We report at the end of this
section the effect of different “tf” variants.

The query terms are joined with “idf” to generate the relation
“wQuery” of weighted query terms. The normalised query



18 Thomas Roelleke et al.

terms are required for obtaining a probabilistic interpreta-
tion of the sum over thetf -idf products. Finally, we define
the view “stdtf idf retrieve”, which contains the document-
query pairs with their probabilistictf -idf retrieval status val-
ues.

The translation of the PSQL script yields a PRA program
that is equivalent to the PRA program shown next.

# PRA: tf-idf retrieval
# Extensional relations:
# Coll(Term, DocId);
# Query(Term, QueryId);

# tfCollSpace(Term, DocId):
tfCollSpace = Bayes[$2](Coll);
# tf(Term, DocId):
tf = Project disjoint[$1,$2](tfCollSpace);

# Optional: Bind tf to extensional relation.
tf = tf_poissona;

# idf(Term):
idf = Bayes max_idf[](Project[$1](Coll));

# wQuery(Term, QueryId):
wQuery =

Project[$1,$2](Join[$1=$1](Query, idf));

# Normalisation:
norm_wQuery =

Project[$1,$2](Bayes[$2](wQuery));

# Retrieve documents:
# std_tf_idf_retrieve(DocId, QueryId):
std_tf_idf_retrieve =

Project disjoint[$4,$2](
Join[$1=$1](norm_wQuery, tf));

retrieve = std_tf_idf_retrieve;

Each PRA equation corresponds to a view in the PSQL
script. PSQL views that involve evidence key or assumption
lead to PRA expressions in which the relational Bayes per-
forms the required probability estimation. This is the case
for the view “tfCollSpace” (see section 6.1 for an example
of the relation “tfCollSpace”) and for the view “idf” (see
section 6.3 for the definition of the assumption maxidf).

We have modelled standardtf -idf. The maximum-likelihood
estimate is a conceptual part of the minimal probabilistic re-
lational framework we presented so far. It is one of the main
contributions of the relational Bayes that such estimations
are now part of the probabilistic relational paradigm, and do
not need anymore to be computedoutsideof the relational
algebra. However, for Poisson-like estimates, we still bind
“tf” to the extensional relation “tfpoissona” in which prob-
abilities were generated offline. There are numerous ways
in the PSQL/PRA framework to specify Poisson-like prob-
abilities, however, our aim is to integrate probability esti-
mations neatly into the conceptual framework of probabilis-
tic relational modelling, rather than inventing new assump-
tions and SQL syntax extensions for each way the proba-
bilities can be estimated. The specification and semantics
of Poisson-based and other probabilities actually requires to

extend the framework we present here in this paper. The ex-
tension is based on providing more assumptions for the re-
lational Bayes, and also on providing special assumption for
the Join. Since these extensions significantly enhance and
enlarge the framework, we focus in this paper on the mini-
mal PRA and its relational Bayes, and we address the exten-
sions in future work.

When implementingtf -idf, we encountered less complex
PSQL programs that provide atf -idf -like RSV. Consider in
the following an alternative and fairly compact PSQL pro-
gram, where we joinidf -weighted query terms with the re-
lation “Coll” rather than “tf”. In “Coll”, we have non-distinct
Term-DocId tuples, whereas in “tf”, tuples are distinct since
the non-distinct Term-DocId tuples have been aggregated
into the probabilities of the tuples in “tf”.

-- PSQL: alternative tf-idf-like retrieval
-- This tf-idf variant does not rely on the
-- generation of an explicit tf relation.

CREATE VIEW alt1_tf_idf_retrieve AS
SELECT INDEPENDENT DocId, QueryId
FROM wQuery, Coll
WHERE wQuery.Term = Coll.Term;

The translation to PRA yields:

# PRA
alt1_tf_idf_retrieve =

Project independent[$4,$2](
Join[$1=$1](wQuery, Coll));

The independence assumption leads to an aggregation of
the query term probabilities such that we obtain for the
probabilities in “alt1tf idf retrieve”: RSV(d, q) = 1 −
∏

(t,d)∈Coll(1 − P (q|t)). Note that the aggregation of non-
distinct(t, d) tuples in the relation “Coll” reflects the within-
document term frequency. The light-weight nature of this
implementation motivated us to investigate the retrieval
quality of this script againsttf -idf -implementations that con-
tain an explicit relation “tf”.

For another candidate with explicit “tf”, consider the follow-
ing script in which we join the non-normalised rather than
the normalised query term weights, and view the query terms
as independent rather than disjoint.

-- PSQL: alternative tf-idf-like retrieval
-- Aggregation of independent, non-normalised
-- query term weights.

CREATE VIEW alt2_tf_idf_retrieve AS
SELECT INDEPENDENT DocId, QueryId
FROM wQuery, tf
WHERE wQuery.Term = tf.Term;

Note the difference between “alt2tf idf retrieve” and
“std tf idf retrieve”: In “alt2 tf idf retrieve”, we (have to)
apply an independence assumption. Thus, a document that
contains one very rare term with a high term frequency will
be ranked very high, regardless of the other query terms.
In “std tf idf retrieve”, we (had to) normalise the weighted
query terms for the safe application of a disjoint projection.



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 19

To investigate the performance of differenttf -idf notions
that emerged when modellingtf -idf in PSQL/PRA, we ran
thetf -idf variants on a 500 MB structured collection (INEX
collection, [INE]) with 12,000 articles and 15 million re-
trievable contexts (sections, paragraphs, etc). This leads to
32.5 million tuples in a representation similar to the relation
“Coll” in our running example.

For thetf -idf variants, we obtain the retrieval quality pre-
sented in figure 12, where the variants are sorted by perfor-
mance.

tf -idf tf wQuery avg-prec prec@10
std1 Poissontf normalised 0.2713 0.4138
std2 Likelihood tf normalised 0.2077 0.4103
alt1 implicit tf non-normalised 0.2038 0.4091
alt2 Likelihood tf non-normalised 0.1224 0.2586

Fig. 12 Retrieval quality fortf -idf alternatives

The experiment confirmstf -idf with Poisson-liketf to per-
form best. The standard variants (std1 and std2) work with
normalisedidf -based probabilities for query term weight-
ing, whereas the alternative variants (alt1 and alt2) work
with non-normalised query term weights. The variant with
implicit tf , where the join of query terms with the rela-
tion “Coll” followed by an independent projection implicitly
captures thetf part, performs quite well, taking into account
that this implementation actually frees the system from pro-
viding a view “tf” or even a materialised relation.

Actually, it is in this paper not our aim to discuss retrieval
quality. We know that depending on the application and data,
we need to adjust retrieval strategies. What we do not know
yet, but what we can investigate now given the expressive-
ness of PSQL, is for example which retrieval function is best
to retrieve the ‘Chinese or English people that we should re-
cruit to open a business branch in China’. The point of PSQL
is that we can define and refine ranking for any query, in par-
ticular for queries that involve complex relational schemas,
and not just a relation of terms and document ids, as it is
mostly the case in document retrieval applications.

What thetf -idf -variation demonstrates is that PSQL is flex-
ible regarding probability estimation and aggregation, isap-
plicable to large-scale data, and allows to formulate and in-
vestigate retrieval models in an abstract, relatively compact
but still efficient representation.

7.2 Binary Independent Retrieval Model (BIRM)

The binary independent retrieval model (BIRM, [RSJ76]) is
a theoretical pillar of probabilistic retrieval. We investigate
in this section the probabilistic relational modelling of the
BIRM.

The BIRM defines theRSVas follows:

RSVBIRM (d, q) =
∑

t∈d∩q

[

log
PD(t|q, r)

PD(t̄|q, r)
− log

PD(t|q, r̄)

PD(t̄|q, r̄)

]

Here, the variations of thePD(t|q, r) probabilities are the
document-frequency-based probabilities that termt occurs
in the respective set of relevant and non-relevant documents.
Assuming the collection to approximate the set of non-
relevant (i.e.c = r̄), and applying theidf -definition, the
BIRM can be rewritten as a linear combination ofidf -values
([dVR05]):

RSVBIRM (d, q) =

=
∑

t∈d∩q

[idf(t, c) − idf(t, r) + idf(t̄, r) − idf(t̄, c)]

The probabilistic relational implementation is based on the
linear combination ofidf -values. Based on whether or not
the negative term events are taken into account, and based
on the choice of the set of non-relevant documents, there
are four variants of the BIRM. We present the implementa-
tion of the variantidf(t, c) − idf(t, r) where we combine the
positive term events in the collection and the set of relevant
documents, and we disregard the negative term events.

In the PSQL implementation, we define accordingly the
views “idf c” and “idf r”. The PSQL script is as follows:

-- PSQL: birm retrieval
-- Extensional relations:
-- Coll(Term, DocId);
-- Query(Term, QueryId);
-- relevant(QueryId, DocId);

-- collection of relevant documents:
CREATE VIEW relColl AS

SELECT Coll.Term, Coll.DocId
FROM relevant, Coll
WHERE relevant.DocId = Coll.DocId;

-- idf in collection:
CREATE VIEW idf_c AS

SELECT Term
FROM Coll
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

-- idf in relevant:
CREATE VIEW idf_r AS

SELECT Term
FROM relColl
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

-- query term weighting:
CREATE VIEW wQuery_c AS

SELECT Term, QueryId
FROM Query, idf_c
WHERE Query.Term = idf_c.Term;

CREATE VIEW wQuery_r AS
SELECT Term, QueryId
FROM Query, idf_r
WHERE Query.Term = idf_r.Term;

CREATE VIEW norm_wQuery_c AS



20 Thomas Roelleke et al.

SELECT Term, QueryId
FROM wQuery_c
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW norm_wQuery_r AS
SELECT Term, QueryId
FROM wQuery_r
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

-- combination of normalised weights:
CREATE VIEW wQuery AS

norm_wQuery_c MINUS SUBSUMED norm_wQuery_r;
CREATE VIEW norm_wQuery AS

SELECT Term, QueryId
FROM wQuery
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW distinctColl AS
SELECT DISTINCT Term, DocId
FROM Coll;

-- retrieve documents:
CREATE VIEW birm_retrieve AS

SELECT DISJOINT DocId, QueryId
FROM norm_wQuery, distinctColl
WHERE norm_wQuery.Term = distinctColl.Term;

CREATE VIEW retrieve AS
SELECT DocId, QueryId
FROM birm_retrieve;

The view “relColl” contains the Term-DocId tuples of the
relevant documents. Then, the views “idfc” and “idf r” are
defined over “Coll” and “relColl”, respectively. This is fol-
lowed by query term weighting and the subsumed subtrac-
tion of query term weights. Finally, the join of query term
weights and the distinct collection representation yieldsthe
retrieval result. Note that we join with a distinct view of the
collection to reflect the nature of the BIRM.

The translation to PRA yields a PRA program equivalent to
the PRA program shown next:

# PRA: birm retrieval
# Extensional relations:
# Coll(Term, DocId);
# Query(Term, QueryId);
# relevant(QueryId, DocId);

# Collection of relevant documents:
# relColl(Term, DocId):
relColl =

Project[$3,$4](
Join[$2=$2](relevant, Coll));

# idf in collection:
idf_c = Bayes max_idf[](Project[$1](Coll));

# idf in relevant documents:
idf_r = Bayes max_idf[](Project[$1](relColl));

# Query term weighting:
wQuery_c =

Project[$1,$2](Join[$1=$1](Query, idf_c));
wQuery_r =

Project[$1,$2](Join[$1=$1](Query, idf_r));

# Normalisation:
norm_wQuery_c = Bayes[](wQuery_c);
norm_wQuery_r = Bayes[](wQuery_r);

# Combination of query term weights:
wQuery =

Subtract subsumed(norm_wQuery_c,
norm_wQuery_r);

norm_wQuery = Bayes[](wQuery);

distinctColl = Project distinct[$1,$2](Coll);

# Retrieve documents:
birm_retrieve =
Project disjoint[$4,$2](

Join[$1=$1](norm_wQuery, distinctColl));

retrieve = birm_retrieve;

There are two equations for theidf -based probabilities of
terms: “idf c” for the collection, and “idfr” for the set
of relevant documents. The subsumed subtraction performs
the linear combinationidf(t, c) − idf(t, r) for the respective
query terms. The disjoint projection sums per document-
query pair over the query term probabilities.

There are a number of issues regarding the implementation
of BIRM. One issue is that the implementation shows the
parallel betweentf -idf and BIRM. Thetf -idf script contains
only the view “idf”, whereas the BIRM script contains the
views “idf c” and “idf r”, and this clearly shows how the
BIRM proposes to consider relevance information for query
term weighting. Another issue is the semantics of the imple-
mentation. If a term is frequent in the collection, then it has a
small probability in idfc. If the same term is rare in the rel-
evant documents, then it has a relatively large probabilityin
idf r. This is certainly a poor term for selecting relevant doc-
uments. According to the discussion for a subtraction over
subsumed events in section 5.1, such a term will have a prob-
ability of zero, and thus it will not affect the ranking. In the
genuine formulation of the BIRM, poor terms have a neg-
ative impact on theRSV. To achieve a “correct” implemen-
tation of the BIRM, we would need negative probabilities,
which we have excluded for now. Also, the maxidf-based
normalisations consider the cardinality of the collectionand
the set of relevant documents, whereas the genuine formu-
lation does not consider the cardinality. The relationshipof
the genuine BIRM and its probabilistic relational implemen-
tation is a topic of future research.

We have achieved a PSQL/PRA implementation of the
BIRM, and we continue in the next section with the other
main probabilistic approach to IR, namely language mod-
elling.

7.3 Language Modelling (LM)

Language modelling linearly combines the probability
PT (t|c) (probability that termt occurs in collectionsc) and
the probabilityPT (t|d) (probability that termt occurs in



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 21

documentd). These probabilities are estimated in the tuple
space, which is indicated by theT subscript. TheRSVis de-
fined as follows:

RSVLM (d, q) =
∑

t∈q

log (λ · PT (t|d) + (1 − λ) · PT (t|c))

The mixture parameterλ is to be set: It can be term-
dependent, query-dependent, or background-dependent.

The following PSQL script is an implementation of LM:

-- PSQL: lm retrieval
-- Extensional relations:
-- Coll(Term, DocId);
-- Query(Term, QueryId);
-- tf_sum(Term, Context);
-- mixture(Name);

-- mixture:
DELETE FROM mixture;
INSERT INTO mixture VALUES
0.8 (’p_t_d’), 0.2 (’p_t_c’);

CREATE VIEW lambda1 AS
SELECT FROM mixture
WHERE mixture.Name = ’p_t_d’;

CREATE VIEW lambda2 AS
SELECT FROM mixture
WHERE mixture.Name = ’p_t_c’;

-- P(t|d):
-- Principle description via views:
CREATE VIEW tfCollSpace AS

SELECT Term, DocId
FROM Coll
EVIDENCE KEY (DocId);

CREATE VIEW p_t_d AS
SELECT DISJOINT Term, DocId
FROM tfCollSpace;

-- For efficiency,
-- bind p_t_d to extensional instance.
CREATE VIEW p_t_d AS

SELECT Term, Context AS DocId
FROM tf_sum;

-- P(t|c):
CREATE VIEW p_t_c_evidence AS

SELECT Term
FROM Coll
EVIDENCE KEY ();

CREATE VIEW p_t_c AS
SELECT DISJOINT Term
FROM p_t_c_evidence;

-- retrieved(DocId, QueryId):
-- Needed for generating schema-compatible
-- views docModel and collModel.
CREATE VIEW retrieved AS

SELECT DISTINCT DocId, QueryId
FROM Query, Coll
WHERE Query.Term = Coll.Term;

CREATE VIEW docModel AS
SELECT Term, DocId
FROM lambda1, p_t_d;

CREATE VIEW collModel AS
SELECT Term, DocId

FROM lambda2, p_t_c, retrieved;

-- combine document and collection models
CREATE VIEW lm1_p_t__c_d AS

docModel UNION DISJOINT collModel;

-- retrieve documents
CREATE VIEW lm1_retrieve AS

SELECT SUM_LOG DocId, QueryId
FROM Query, lm1_p_t__c_d
WHERE Query.Term = lm1_p_t__c_d.Term;

-- Probabilistic interpretation:
-- P(t|c,d) = lambda1 P(t|d) + lambda2 P(t|c)
-- RSV(d,q) = prod_t P(q|t) P(t|c,d)

CREATE VIEW retrieve AS
SELECT DocId, QueryId
FROM lm1_retrieve;

The PSQL script shows the probabilistic views “pt d” and
“p d d”, where the probabilities correspond toPT (t|d) and
PT (t|c), respectively. Similar to thetf -idf script, we show
the principle generation ofPT (t|d), which we then overwrite
by a view that takes advantage of a materialised relation
“tf sum” that contains the pre-computed probabilities. This
is purely for reasons of efficiency, since the view “pt d” re-
quires an aggregation of probabilities, and this aggregation
can be pre-computed in a materialised relation. Then, oper-
ations on “pt d” are more efficient.

Consider next a PRA program equivalent to the outcome of
the PSQL to PRA translation:

# PRA: lm retrieval
# Extensional relations:
# Coll(Term, DocId);
# Query(Term, QueryId);
# tf_sum(Term, Context);
# mixture(Name);

# Mixture:
_delete(mixture);
0.8 mixture(p_t_d);
0.2 mixture(p_t_c);
lambda1 = Project[](Select[$1=p_t_d](mixture));
lambda2 = Project[](Select[$1=p_t_c](mixture));

# P(t|d): p_t_d(Term, DocId):
tfCollSpace = Bayes[$2](Coll);
p_t_d = Project disjoint[$1,$2](tfCollSpace);

# Optional usage of pre-computed tf:
p_t_d = tf_sum;

# P(t|c): p_t_c(Term):
collSpace = Bayes[](Project[$1](Coll));
p_t_c = Project disjoint[$1](collSpace);

# Retrieved documents for the generation of
# the collection model that can be united with
# the document model.
# retrieved(DocId):
retrieved =

Project distinct[$4](
Join[$1=$1](Query, Coll));

# Document model:



22 Thomas Roelleke et al.

# docModel(Term, DocId):
docModel = Join[](lambda1, p_t_d);

# Collection model:
# collModel(Term, DocId):
collModel =

Join[](lambda2, Join[](p_t_c, retrieved));

# Combination of docModel and collModel:
lm1_p_t__c_d =

Unite disjoint(docModel, collModel);

# Retrieve documents:
lm1_retrieve =

Project sum_log[$4,$2](
Join[$1=$1](Query, lm1_p_t__c_d));

retrieve = lm1_retrieve;

The PSQL views correspond to their respective PRA equa-
tions. The view “collModel” involves an expensive join
of query term weights based onP (t|c) with the re-
trieved documents. This join is required since the relational
union requires schema-compatible relations “docModel”
and “collModel”.

The implementation shown above is semantically correct but
because of the required schema compatibility not efficient.
We have started to look into alternative PRA formulation,
and we have defined an extended PRA with special mixture
joins that support a correct and efficient implementation of
LM. This is related to the description of Poisson-like esti-
mates mentioned in the section 7.1 ontf -idf. We will report
on the PRA extensions regarding Poisson and probability
mixtures in future work.

We have presented the PSQL/PRA implementation of lan-
guage modelling. With this, we have completed the imple-
mentation of three main models, namelytf -idf, BIRM, and
LM. For tf -idf and LM, we showed semantically correct
implementations, whereas the BIRM implementation does
not implement the genuine BIRM formulation. Proving the
correctness of PSQL/PRA implementations is an important
task; for the implementations shown here, the correctness
has been investigated but the formal proofs have been ex-
cluded from this paper. Also, the PSQL/PRA scripts fortf -
idf , BIRM and LM have been verified in a prototypical im-
plementation. In the next section, we add the probabilistic
relational modelling of precision/recall.

7.4 Precision/Recall

Precision and recall are frequently used measures to com-
pare retrieval quality. Precision and recall can be interpreted
as the conditional probabilitiesP (relevant|retrieved) and
P (retrieved|relevant), respectively. This interpretation im-
plies that we can model precision and recall in a proba-
bilistic relational framework that supports the description of
conditional probabilities. This has two benefits: Firstly,the
measures become part of a conceptual framework in which

we model IR. Secondly, by replacing black-box tools that
produce precision/recall values, we enable the application-
specific modification of measures.

For an illustration, consider the following data in relations
“Retrieved” and “Relevant”:

Retrieved
QueryId DocId
q1 doc2
q1 doc4
q1 doc6
q1 doc8
q1 doc1
q1 doc3
q1 doc5
q1 doc7
q1 doc9
q2 doc5
q2 doc4

Relevant
QueryId DocId
q1 doc1
q1 doc4
q1 doc9
q1 doc11
q1 doc14
q1 doc19
q2 doc4

Based on these extensional relations, we define three views
that are later used for defining precision and recall.

-- PSQL
-- Extensional relations:
-- Retrieved(QueryId, DocId);
-- Relevant(QueryId, DocId);

CREATE VIEW retrievedSpace AS
SELECT QueryId, DocId
FROM Retrieved
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW relevantSpace AS
SELECT QueryId, DocId
FROM Relevant
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW retrieved_and_relevant AS
SELECT QueryId, DocId
FROM Relevant, Retrieved
WHERE Relevant.QueryId = Retrieved.QueryId
AND Relevant.DocId = Retrieved.DocId;

The view “retrievedSpace” contains for each query the
probabilistic tuples that reflect the probability that a doc-
ument is among the retrieved documents of the query.
The view “relevantSpace” has the analogous role for the
relevant documents. Given these spaces and the view
“retrievedand relevant”, we describe precision and recall:

-- PSQL: precision and recall

CREATE VIEW precision AS
SELECT DISJOINT query
FROM retrieved_and_relevant, retrievedSpace
WHERE retrieved_and_relevant.QueryId =

retrievedSpace.QueryId
AND retrieved_and_relevant.DocId =

retrievedSpace.DocId;

CREATE VIEW recall AS
SELECT DISJOINT query
FROM retrieved_and_relevant, relevantSpace
WHERE retrieved_and_relevant.QueryId =



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 23

relevantSpace.QueryId
AND retrieved_and_relevant.DocId =

relevantSpace.DocId;

The translation of the first PSQL script with views
“retrievedSpace” and “relevantSpace” yields the following
PRA program:

# PRA
retrievedSpace = Bayes[$1](Retrieved);
relevantSpace = Bayes[$1](Relevant);

retrieved_and_relevant =
Project[$1,$2](
Join[$1=$1,$2=$2](
Relevant, Retrieved));

The first two equations yield the two spaces
“retrievedSpace” and “relevantSpace”, where in
each space a document occurs with the probability
Pspace(d|q) = 1/N(q), whereN(q) is the number of docu-
ments for queryq. The third equation yields the relation of
retrieved and relevant documents.

We obtain the following probabilistic relations:

retrievedSpace
Prob QueryId DocId

1/9 q1 doc2
1/9 q1 doc4
1/9 q1 doc6
1/9 q1 doc8
1/9 q1 doc1
1/9 q1 doc3
1/9 q1 doc5
1/9 q1 doc7
1/9 q1 doc9
1/2 q2 doc5
1/2 q2 doc4

relevantSpace
Prob QueryId DocId

1/6 q1 doc1
1/6 q1 doc4
1/6 q1 doc9
1/6 q1 doc11
1/6 q1 doc14
1/6 q1 doc19

1 q2 doc4

retrievedand relevant
Prob QueryId DocId

1 q1 doc1
1 q1 doc4
1 q1 doc9
1 q2 doc4

Next, consider the PRA equations for precision and recall:

# PRA: precision and recall

precision =
Project disjoint[$1](
Join[$1=$1,$2=$2](

retrieved_and_relevant, retrievedSpace));

recall =
Project disjoint[$1](
Join[$1=$1,$2=$2](

retrieved_and_relevant, relevantSpace));

The joins of “retrievedand relevant” with the respective
spaces, followed by disjoint projections, yield the precision
and recall values:

precision
Prob QueryId
3/9 q1
1/2 q2

recall
Prob QueryId
3/6 q1

1 q2

We have demonstrated how PSQL/PRA enables to express
precision and recall. This result embeds both, retrieval mod-
els and quality measures, into the conceptual framework of
probabilistic relational modelling. The expressiveness of re-
lational modelling allows to customise the measures. For
example, to capture the dependency of tuples (documents)
in relation “Retrieved”, we would join “Retrieved” with a
relation “Dependency(DocId1, DocId2)” to perform a post-
processing of the retrieval result, and to base a measure on
the obtained alternative of retrieved documents.

The modelling of precision and recall completes the proba-
bilistic relational modelling of main IR concepts. In the next
section, we evaluate PSQL/PRA against the modelling of IR
models and probability estimation in standard SQL.

8 Evaluation

In this section we compare the following:

– The modelling oftf -idf retrieval using traditional SQL
vs. PSQL. The comparison highlights the abstraction and
expressiveness of each approach.

– The efficiency and scalability of modellingtf -idf re-
trieval using traditional SQL vs. PSQL. The compari-
son focuses on investigating the performance of each ap-
proach for handling large-scale data.

– The scalability of estimating probabilities using SQL
vs. PSQL. The investigation focuses on the performance
of generating probabilities in large-scale databases.

We first investigate in section 8.1 the implementation oftf -
idf in both traditional SQL and PSQL. Then, we discuss
probability estimation in section 8.2.

According to their different natures, we refer to the imple-
mentation of modelling IR by traditional SQL as “IR on
DB”, and we refer to the PSQL approach as “DB+IR”. We
demonstrate our implementations and discuss our analysis
in the following sections.

8.1 TF-IDF-based Retrieval: SQL vs. PSQL

As we presented in section 4,tf -idf -based retrieval can be
denoted using the probabilityP (t|d) that termt occurs in
documentd, and the probabilityP (t|c) that termt occurs in
a document of collectionc.

RSV (d, q) =
∑

t

P (t|d) · − logP (t|c)

We take the “Coll” relation from the running example in sec-
tion 3 to demonstrate our implementations.



24 Thomas Roelleke et al.

Coll
Attribute Type Index
Term varchar non-clustered
DocId varchar none

CollStats
Attribute Type Index
NumOfDocs int none

DocSpace (DocumentSpace)
Attribute Type Index
DocId varchar clustered
Length int none

TermFreq
Attribute Type Index
Term varchar non-clustered
DocId varchar none
P t d float none

TermSpace
Attribute Type Index
Term varchar clustered
DocFreq (DF) int none

TermSpaceDF
Attribute Type Index
Term varchar non-clustered
P t c float

QTerms
Attribute Type Index
Term varchar non-clustered

Fig. 13 SQL database schema for SQL-based modelling of text retrieval

8.1.1 TF-IDF Using Traditional SQL

Figure 8.1.1 shows the database schema applied for the tf-
idf implementation with SQL. We start with the SQL view
named “CollStats” containing collection-wide statistics, for
example, the number of documents.

CREATE VIEW CollStats AS
SELECT count(DISTINCT DocId) AS NumOfDocs
FROM Coll;

We obtain:

CollStats
NumOfDocs

5

We define “CollStats”, and also the relations to follow, as
views, since the idea is that all these relations are based
on the persistent relation “Coll(Term, DocId)”, in which we
model the representation of the collection. In an ideal sce-
nario, updates on the possibly huge relation “Coll” update
automatically the views in which the statistics are main-
tained.

Next, we create a table of documents (relation “DocSpace”)
where we store for each document the document length.

CREATE VIEW DocSpace AS
SELECT DocId, count(Term) AS Length
FROM Coll
GROUP BY DocId;

We obtain:

DocSpace
DocId Length
doc1 2
doc2 3
doc3 3
doc4 1
doc5 1

Now, we are ready to compute the probabilitiesP (t|d) and
P (t|c). However, we treat their modelling differently. In the

case ofP (t|d) we compute the final probability because we
assume that there will be no partial update of the document.
On the other hand, we delay the computation ofP (t|c) in or-
der to be prepared for updating the collection incrementally.

Consider next the creation of view “TermFreq”(Term, Doc-
ument, Pt d):

CREATE VIEW TermFreq AS
SELECT Term, Coll.DocId,

count(Term)/DocSpace.Length AS P t d
FROM DocSpace, Coll
WHERE Coll.DocId = DocSpace.DocId

GROUP BY Coll.DocId, Term;

We obtain:

TermFreq
Term DocId P t d

sailing doc1 1/2
boats doc1 1/2
sailing doc2 2/3
boats doc2 1/3
sailing doc3 1/3
east doc3 1/3
coast doc3 1/3
sailing doc4 1.0
boats doc5 1.0

We have modelled the so-called normalised within-
document term frequency. Next, we create the table
“TermSpace” where we maintain for each term the number
of documents (the so-called document frequency) in which
the term occurs.

CREATE VIEW TermSpace AS
SELECT Term, count(DISTINCT DocId) AS DF
FROM Coll
GROUP BY Term;

We obtain:

TermSpace
Term DF (DocFreq)
sailing 4
boats 3
east 1
coast 1



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 25

The explicit “TermSpace” is not a common practice. In
[GF04], a static model is proposed where idf is directly com-
puted. This is shown in the following SQL statement:

CREATE VIEW idf AS
SELECT Term,
-log(count(DISTINCT DocId)/
CollStats.NumOfDocs)

FROM CollStats, Coll
GROUP BY Term;

The above view “idf” is problematic for update operations.
If we add a document to the collection, then the tuples in
the view need to be updated because CollStats.NumOfDocs
has changed. Therefore, we model in “TermSpace” the
“DocFreq” as the total count and apply the logarithm and
perform normalisation (with respect to the total number of
documents) at retrieval time. Consequently, this incremen-
tal nature is different from the static approach described in
[GF04].

Now, we are ready to describetf -idf -based retrieval. The
probabilities based on document frequency can be computed
from “TermSpace” as follows:

CREATE VIEW TermSpaceDF AS
SELECT Term,
TermSpace.DF/CollStats.NumOfDocs AS P t c

FROM TermSpace, CollStats;

We obtain:

TermSpaceDF
Term P t c

sailing 4/5
boats 3/5
east 1/5
coast 1/5

The delayed application of the logarithm keeps our
model tidy, since now we have in “TermFreq” and in
“TermSpaceDF” probabilistic weights with a clear seman-
tics, namelyP (t|d) andP (t|c).

Finally, we describetf -idf -based retrieval as the aggrega-
tions of query terms with document frequencies and within-
document term frequencies.

SELECT sum(P t d * -log(P t c)), DocId
FROM QTerms, TermSpaceDF, TermFreq
WHERE QTerms.Term = TermSpaceDF.Term
AND TermSpaceDF.Term = TermFreq.Term
GROUP BY DocId;

8.1.2 TF-IDF Using PSQL

Figure 14 shows the probabilistic database schema we use
for modelling document retrieval. First, we describe the
probabilityP (t|d), i.e. the probability that termt occurs in
documentd.

CREATE VIEW TermFreq AS
SELECT DISJOINT Term, DocId
FROM Coll
EVIDENCE KEY (DocId);

We obtain:

TermFreq
P (τ ) Term DocId

1/2 sailing doc1
1/2 boats doc1
2/3 sailing doc2
1/3 boats doc2
1/3 sailing doc3
1/3 east doc3
1/3 coast doc3
1.0 sailing doc4
1.0 boats doc5

Next, consider the creation of a term space in which the term
probabilities reflectP (t|c), i.e. the probability thatt occurs
in (a document of)c.

CREATE VIEW distinctTerms AS
SELECT DISTINCT Term, DocId
FROM Coll;

CREATE VIEW TermSpaceDF AS
SELECT Term
FROM distinctTerms
EVIDENCE KEY ();

We obtain:

TermSpaceDF
P (τ ) Term

4/5 sailing
3/5 boats
1/5 east
1/5 coast

Next, we apply an advanced feature of PSQL, namely
so-called informativeness-based probability estimations.
Through this operation, we obtain a term space in which the
probabilities reflect the informativeness of terms.

CREATE VIEW TermSpaceIDF AS
SELECT Term
FROM TermSpaceDF
ASSUMPTION MAX_LOG
EVIDENCE KEY ();

The assumption maxlog inverts the occurrence probabili-
ties in “TermSpaceDF”, assigning high probabilities to rare
terms, and low probabilities to frequent terms.

Finally, retrieval is described as a join of weighted query
terms and the relation “TermFreq”.

SELECT DISTINCT DocId
FROM QTerms, TermSpaceIDF, TermFreq
WHERE QTerms.Term = TermSpaceIDF.Term

AND QTerms.Term = TermFreq.Term;

We have modelledtf -idf -based retrieval in PSQL. While
in traditional SQL aggregation operators were necessary, in
PSQL we worked on a conceptual probabilistic layer and
defined evidence keys and probabilistic assumptions. Thus,
it becomes feasible to apply IR concepts to any relational
database.



26 Thomas Roelleke et al.

Coll
Attribute Type
Term varchar
DocId varchar

TermFreq
Attribute Type
Term varchar
DocId varchar

TermSpaceDF
Attribute Type
Term varchar

TermSpaceIDF
Attribute Type
Term varchar

Fig. 14 PSQL database schema for modelling text retrieval

8.1.3 Comparison of Efficiency and Scalability

To evaluate efficiency and scalability, we used two systems
since there no existing system can process both SQL and
PSQL.

The first system, referred to anonymously as A, is a well-
known open source multi-thread database and the second
one, referred to as B, is our generic DB+IR prototype
HySpirit ([RLK01]). On both systems, we implemented a
tf -idf text retrieval application. In other words, using can-
didate A we implemented the ranking function by mapping
the IR models onto standard SQL (IR-on-DB), while using
candidate B we implemented the ranking model in PSQL
(DB+IR). The implementation details of both systems were
described in sections 8.1.1 and 8.1.2 respectively.

It is important to emphasise that the aim of the comparison
is to show the flexibility and scalability of the two different
approaches (IR-on-DB and DB+IR). We are not comparing
the actual systems. Although the experimental environments
are not entirely the same, for the purpose of demonstrating
the flexibility and scalability this setup is sufficient.

The experiments were run on a Linux server (Fedora core 2)
that is equipped with one Intel Pentium4 2.60GHz CPU and
2GB memory. The testing data was produced from the enter-
prise track of TREC 2005 data [TRE], and the original text
size is 1.9GB. After transformation there are about 40 mil-
lion tuples in the table “Coll”, which in system A uses 1.3GB
with a 416MB B-tree index. In system B, it uses 1.0GB for
the table and 1.3GB for a Hash-based index. Thus, the initial
data size of system A is 1.7GB, and system B is 2.3GB. Af-
ter pre-processing, intermediate tables (which can be consid-
ered as materialised views) and corresponding indexes were
built. In total, the database size of system A is 3.0GB, and
system B is 4.4GB. The database sizes are different because
they use different storage data structures and different index-
ing mechanisms.

For evaluating the pre-processing cost, we measured the pro-
cessing time for 10, 20, 30, and 40 (scaling points 1x, 2x,
3x and 4x) million tuples. For evaluating the retrieval time,
we measured the performance of various queries, where
the queries vary with respect to the number of tuples they
retrieve (so-called selectivity of the query). A query with
higher selectivity returns less tuples. We measured process-
ing time for 10, 25, ..., and 100 (scaling points 1x, 2.5x, ...,
10x) thousand tuples returned.

In section 8.1.1, we discussed using views for the intermedi-
ate relations. In real-world IR applications, the update oper-

ation is not as frequent as in transaction-oriented databases.
Therefore, we can store the intermediate outputs to exten-
sional tables, while an alternative is to use materialised
views providing that the database back-end supports them.
As a result, the pre-processing time includes the construc-
tion time of the intermediate relations (materialised view)
and corresponding indexes.

Figure 15 shows the performance of pre-processing. The in-
dexing processes were executed in batch mode, and 10 mil-
lion to 40 million tuples were loaded.

Figure 15(a) shows the database construction time, where
the processing steps follow the sequence described in sec-
tion 8.1.1. First, the source data was loaded to the “Coll”
table, and the B-tree index was built. When the data was
loaded, the loading and indexing time for 10 million tuples
is about 4,600 seconds, and for 40 million tuples is about
6,800 seconds. As soon as the data was loaded, we computed
the statistic of “Coll” and stored it in “CollStats”. Because
the index was available, the statistic was calculated instantly.
In the third step, we generated the “DocSpace” table, which
contains the document Ids against their document lengths.
The curve shows that the time increases in proportion with
the number of tuples. Forth, we generated the term frequency
in “TermFreq”. The curve of processing time seems propor-
tional while less than 3 million tuples were loaded, but the
time dramatically increased when we loaded 4 million tu-
ples. The last step computed the document frequency that
was in “TermSpace”. The processing time increased sharply
after 2 million tuples, this is because to aggregatedf needs
to perform a distinct projection over the entire “Coll” table,
and the aggregation time increased polynomially.

Figure 15(b) shows the DB+IR pre-processing time, where
we needed to load and index the data and compute the
term frequency. The other intermediate relations were gen-
erated on-the-fly. The curve shows the loading time plus
indexing time, where it is about proportional to the data
size. Based on the relation “Coll”, term frequency were cal-
culated and stored in “TermFreq”, the step includes both
computation and indexing. Because the document frequency
can be obtained from the probabilistic index (i.e. index on
“Coll(Term)”), its computation is saved, and no other pre-
processing is needed.

Figure 16 gives the overall performance. To compare the to-
tal pre-processing time of the two approaches, we sum up
the times of the pre-processing steps, and the result is shown
in figure 16(a). We find that the DB+IR needs less pre-
processing time than IR-on-DB, and DB+IR pre-processing
is linear to the data size, whereas IR-on-DB is of polynomial



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 27

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4x3x2x1x

pr
ep

ro
ce

ss
in

g 
tim

e 
(s

ec
)

scale factor (data size, 10m to 40m tuples)

Coll
CollStat

DocSpace
TermFreq

TermSpace

(a) IR-on-DB pre-processing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4x3x2x1x

pr
ep

ro
ce

ss
in

g 
tim

e 
(s

ec
)

scale factor (data size, 10m to 40m tuples)

Coll
TermFreq

(b) DB+IR pre-processing

Fig. 15 Analysis of pre-processing costs: IR-on-DB and DB+IR

 0

 5000

 10000

 15000

 20000

4x3x2x1x

pr
ep

ro
ce

ss
in

g 
tim

e 
(s

ec
)

scale factor (data size, 10m to 40m tuples)

IR-on-DB
DB+IR

(a) Pre-processing

 0

 10

 20

 30

 40

 50

 60

10x7.5x5x2.5x1x

re
sp

on
se

 ti
m

e 
(s

ec
)

scale factor (result size, 10k to 100k tuples)

IR-on-DB
DB+IR

(b) Retrieval

Fig. 16 Comparison of IR-on-DB and DB+IR: pre-processing time and retrieval time

complexity. Figure 16(b) shows the retrieval time of both
systems.The database system outperforms HySpirit, but we
compare here a mature database product with established al-
gebra optimisation and cache usage against our prototypical
implementation of a probabilistic database.

To conclude, we emphasise that the IR-on-DB approach
needs a long preparation phase to become ready to perform
large-scale retrieval. For the DB+IR approach, the prepara-
tion cost are less than those of IR-on-DB. Therefore, the
DB+IR approach is more scalable than the IR-on-DB ap-
proach regarding the estimation of probabilities over mil-
lions of tuples.

8.2 Probability Estimation: SQL vs. PSQL

In this section, we investigate the performance of probabil-
ity estimations using SQL versus PSQL. The assumption is
that with tailored indexes for probability estimation, we can
be faster than traditional SQL in which we use aggregation
functions to implement probability estimation.

Person
Attribute Type Index
Name varchar none
Nationality varchar non-cluster
City varchar none
Prob float none

Fig. 17 SQL database schema of “Person” relation

We load millions of tuples to both systems, and then we re-
trieve tuple-based and value-based probabilities. For this in-
vestigation, we use for SQL the traditional table “Person”.
The schema is shown in figure 17. The schema of the prob-
abilistic table is similar, but without the explicit attribute
“Prob”.

8.2.1 Probability Estimation based on Tuple Frequency

For the attribute “Nationality”, there is an index. We want
to estimate the tuple-based probability of “Nationality”
given “City”, i.e. we want to estimate the probability



28 Thomas Roelleke et al.

PT,Person(n|c), wheren is a value of “Nationality”, andc
is a value of “City”.

In SQL, we create a view called “nationalitySpace” for
counting the total number of values in “Nationality” grouped
by the values in “City”. Then, we obtain the tuple-based
probability by dividing the count of “Nationality” per “City”
by the number of nationalities (“NumOfNa”) per “City”.

-- SQL
CREATE VIEW nationalitySpace AS

SELECT City, count(Nationality) AS NumOfNa
FROM Person
GROUP BY City;

SELECT Nationality, Person.City,
count(Nationality)/nationalitySpace.NumOfNa
AS P n c

FROM nationalitySpace, Person
WHERE Person.City = nationalitySpace.City

GROUP BY Person.City, Nationality;

In PSQL, we specify the probability aggregation and esti-
mation instead of aggregation and mathematical functions
(log). We create the view “nationalitySpace” by specifying
the evidence key “City”. Then, we aggregate the probabili-
ties in a disjoint selection.

-- PSQL
CREATE VIEW nationalitySpace AS

SELECT Nationality, City
FROM Person
EVIDENCE KEY (City);

SELECT DISJOINT Nationality, City
FROM nationalitySpace;

We have described the SQL-based and the PSQL-based
implementation of a tuple-based probability. Next, we de-
scribe the implementation of probability estimations based
on value frequencies.

8.2.2 Probability Estimation based on Value Frequency

In this section, we present the implementations of value-
based probability estimations. We use a similar configura-
tion as for tuple-based probabilities. We calculate the prob-
ability of “Nationality” based on the number of values in
“City” a nationality is associated with, i.e. we compute
the probabilityPV,Person[City](n), wheren is a value from
“Nationality”.

First, we create a view “personStats” to compute the to-
tal number of distinct values in “City”. Then, we group by
“Nationality”, count for each nationality the number of dis-
tinct values in “City” the nationality is associated with, and
divide the count by the number of cities. The negative loga-
rithm yields anidf -value for the values in “Nationality”. The
corresponding SQL statements are as follows:

-- SQL
CREATE VIEW personStats AS

SELECT count(DISTINCT City) AS NumOfCity
FROM Person;

SELECT Nationality,
-log(count(DISTINCT City)/personStats.NumOfCity)

FROM Person, personStats
GROUP BY Nationality;

In PSQL, the expression is more compact. We define anidf -
based space over “Nationality” by specifying the assumption
max idf.

-- PSQL
SELECT Nationality
FROM Person
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

Next, we report the performance results for tuple-based and
value-based probability estimations.

8.2.3 Performance of Probability Estimation

For measuring the performance, we generate a relation
“Person”. We insert 3 million tuples (628MB) to conduct
the experiment. Both HySpirit and the other database sys-
tem built indexes. The index size in HySpirit is 105MB, and
the index size in the database system is 37MB. We use the
same system configuration reported for the previous experi-
ment in section 8.1.3.

Both experiments were also performed in batch mode. We
estimated the probabilities based on the whole data set, and
we recorded the processing elapse time on the measurement
points.

Figures 18 and 19 show the performance for tuple and
value frequencies, respectively. Both experiments show that
the PSQL processing outperforms the SQL processing. In
particular, when estimating the tuple frequency, the pre-
processing of the database system did not finish even after
14 hours, even though proper indexes had been used. When
tracing the reason for this, we found that the selectivity of
“Nationality” is very high, i.e. the number of distinct values
in “Nationality” is relatively low. In contrast, the selectivity
of the attribute “City” is very low, i.e. the number of val-
ues in “City” is higher than in “Nationality”. Therefore, the
traditional approach seemed to struggle grouping by “City”,
and then counting the number of values in “Nationality” per
“City”.

Because in HySpirit, frequencies are maintained in indexes,
the probabilities can be derived directly. The standard index-
ing mechanism in the database system does not provide a
similar functionality, and the probability estimation involves
expensive aggregations. Therefore, the probability estima-
tions were included in the pre-processing stage in the exper-
iment discussed in section 8.1.



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 29

 0

 20

 40

 60

 80

 100

3x2.5x2x1.5x1x0.5x

pr
oc

ss
in

g 
tim

e 
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

DB+IR

(a) Pre-Processing

 0

 200

 400

 600

 800

 1000

3x2.5x2x1.5x1x0.5x

es
tim

at
io

n 
tim

e 
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

DB+IR

(b) Probability Estimation

Fig. 18 Probability estimation based on tuple frequency: pre-processing time and estimation run time (IR-on-DB not shown due to scalability
problem)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

3x2.5x2x1.5x1x0.5x

pr
oc

ss
in

g 
tim

e 
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

IR-on-DB
DB+IR

(a) Pre-Processing

 0

 200

 400

 600

 800

 1000

3x2.5x2x1.5x1x0.5x

es
tim

at
io

n 
tim

e 
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

IR-on-DB
DB+IR

(b) Probability Estimation

Fig. 19 Probability estimation based on value frequency: pre-processing time and estimation run time

9 Discussion and Outlook

In this section, we present discussion points and outlook in
the form of frequently asked questions, which occurred in
various contexts like talks, reviews, discussions, and when
applying the technology.

You view the aggregation of probabilities in traditional SQL
as physical. What does this mean?If we model probabilis-
tic tuples in traditional SQL, then probabilities are treated
equal to normal attribute values such as Name, Price, Na-
tionality, etc. The SQL programmer implements the ranking
strategy using SQL aggregation functions such as sum, max,
and arithmetic functions such aslog. In PSQL, however,
we view probabilities and attribute values to beorthogonal,
i.e. the PSQL programmer has no direct access to probabil-
ities. Instead, the algebra operation defines the aggregation.
Therefore, PSQL is a logical layer, whereas traditional SQL
is physical in this sense, since the probability arithmetics are
described in SQL.

What does “probabilities and attribute values are orthogo-
nal” mean? This aspect is excellently covered in [RR02].
When aggregating attribute values in a probabilistic rela-
tional framework, the aggregation is related to computing
the expectation value. For example, consider a probability
distribution over prices. When we ask for the expected price,
then the expected price is defined asE[price] =

∑

P (price)·
price. This illustrates that there is an implicit usage of prob-
abilities in a PRA, whereas the “normal” attribute values are
explicitly mentioned in the PSQL query.

Tuple weights greater than one or less than zero might oc-
cur when using a disjointness assumption. Is such a rela-
tional model probabilistic?The pure algebra has no safety
net for expressions where assumptions are — from a prob-
abilistic semantics point of view — wrongly specified (see
[DS05] for the notion of safe expressions, and [FR97] for
intensional semantics). One topic of future research is to
map a probabilistic model automatically to PSQL/PRA, and,
vice versa, how to re-engineer the probabilistic model from
a PSQL/PRA script.



30 Thomas Roelleke et al.

Why is the division not used for modelling probability es-
timation?The division is equivalent to an algebra expres-
sion composed of projection, join, and subtraction (see sec-
tion 5.2).

Is the CONTAINS predicate in SQL not sufficient for IR
tasks?Yes and no. Yes, if we are happy with modelling doc-
uments as atomic attribute values, which means that there
are no or only very restricted means of looking inside the
document. No, if we want to apply the expressive power
of the relational model for representing the knowledge con-
tained in a document. We propose to model the content of
documents in a relational schema. The simplest schema is
“Coll(Term,DocId)”, but it is the particular strength of the
relational model to represent any information, e.g. links,
types of links, structure of documents, objects that occur in
document, and the relationships between objects.

You load large relations to database systems, and then
you complain that there are problems with scalability. You
should use the inverted list!We load document represen-
tations to database systems, so that we can reason/search
across the structured and unstructured data. By represent-
ing document content in the structured data model world,
we gain a high level of integration. For example, join Per-
son.Nationality with a document representation and thus re-
trieve documents or document parts that mention the nation-
ality of a particular group of persons. The opposite direction,
namely to export structured data into the unstructured world
for doing retrieval is a principle alternative. However, we
favour to preserve the semantics and structure of data.

What are the next challenges?Our work programme in-
cludes: (1) relevance-based processing of traditional SQL,
(2) design and correctness of probabilistic logical programs,
(3) expressiveness, (4) scalability and optimisation, (5)spe-
cial predicates, and (6) interfaces and languages.

1. Relevance-based processing of SQL:The idea is to con-
vert traditional SQL statements automatically into PSQL
statements in which a ranking strategy is reflected. Then,
all existing (traditional) SQL queries may yield a relevance-
sorted result. Relevance-based SQL could be viewed as the
external layer in figure 2.

2. Design and correctness of PSQL/PRA programs:For a
PSQL/PRA program, we encountered in many contexts the
need to derive the probabilistic semantics, so that the knowl-
edge engineer (the person who works in PSQL/PRA) can
verify his/her scripting. For this, we have developed a proof
methodology which has been part of an earlier version of
this paper, but will be reported separately.

3.Expressiveness:The expressiveness of PSQL/PRA allows
for the modelling of not only retrieval models, but also eval-
uation measures such as precision/recall. Next steps include
to incorporate average precision, precision@10, reciprocal
rank, etc. In general, this is the field of increasing the expres-
siveness where we take, like for the relational Bayes, a care-
ful and conceptual approach, trying to improve expressive-

ness but not overloading an otherwise tidy paradigm with
special operators and functions.

4. Scalability and optimisation:Stream-based processing
(see [PF95] and top-k processing ([FLN03,TWS04]) are
key to scalable and efficient retrieval in large-scale appli-
cations. We covered the DB approaches (known as top-k or
RankSQL) in the background, but we have said little about
how this applies to PSQL. We are working on soft-sorting
algebra operators, that would guarantee real-time response
times while risking that the ranking is sub-optimal.

5. Special predicates:The previous aspect is not to be
confused with stream-based predicates. Stream-based pred-
icates allow to compare tuple values of subsequent tuples.
For example, in the stream of term-document pairs, we
would like to be able to find the documents where the terms
sailing and boats appear near to each other. Another fam-
ily of special predicates are the relevance-based predicates.
We denote a new relevance-based implication predicate as
“→”, borrowing the notation from [vR86] where the con-
cept of relevance-based implication was proposed. We gen-
eralised the document-implies-query approach, and the new
relevance-based predicate can be applied to any two at-
tributes in a relational condition.

6. Interfaces and languages:PSQL/PRA might appeal to
some, but others will prefer interfaces they feel comfort-
able with. Whether it is Datalog, description logic dialects,
XML-based languages, or SQL dialects for assisting RDF
retrieval, the likes are many. Our approach is basically to
investigate the evaluation of such languages by translat-
ing them to PSQL/PRA. In a recent study, we mapped
SPARQL queries ([AR06]), in the past we have mapped
POOL (probabilistic object-oriented logic, [Roe99,LRF02,
LR04]), where POOL triggered recently POLAR (proba-
bilistic object-oriented logic for annotation-based retrieval,
[FF06]), and POLIS (probabilistic object-oriented logic for
information summarisation, [FTR06]), which are highly ab-
stract and tailored languages to assist the comfortable mod-
elling of specific retrieval tasks.

10 Summary and Conclusions

This paper presented a probabilistic variant of SQL in which
we describe probabilityaggregation(section 5) andestima-
tion (section 6). It is one of the main contributions to de-
scribe both, aggregationandestimation, within the coherent
framework of a probabilistic relational algebra. Since neither
the standard five basic operators, nor division, nor attribute
value aggregation are suitable for probability estimation, we
required and developed a new probabilistic operator: The re-
lational Bayes.

The other main contribution of this paper is the probabilis-
tic relational modelling, i.e. a relatively abstract modelling,
of retrieval models (section 7). We have demonstrated the
modelling of differenttf -idf variants, and the modelling of



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 31

the two main probabilistic retrieval models, binary inde-
pendent retrieval model and language modelling. Also, we
modelled precision/recall. This allows for describing task-
specific measures, as required for example, for structured
document retrieval.

The modelling of retrieval models in a probabilistic rela-
tional framework is desirable and useful, since it supports
the development of ranking strategies beyond classical doc-
ument retrieval. Also, since we represent classical document
retrieval in a relational model, we gain the expressive power
of the relational model to reason across structured and un-
structured data. For example, we can join attributes such as
“Person(Nationality)” with a text representation, to retrieve
documents that are related to selected nationalities. And so
forth. For all queries, we can define probabilistic interpreta-
tions of relations that meet the requirements of customised
ranking strategies.

We presented in this paper PRA and PSQL as syntactical
layers; we have developed further interfaces such as prob-
abilistic Datalog variants and terminological logic variants.
Such interfaces are translated to PRA, and the correctness of
the PRA program is an important issue. On one hand, there
is the correctness of the translation to consider, and on the
other hand, there is the correctness with respect to the prob-
abilistic model. An early version of this paper included a
theoretical evaluation (correctness proofs) of the implemen-
tations of retrieval models. These proofs will be reported in
a separate publication.

The conceptual and experimental evaluation of PSQL/PRA
in this paper is three-fold. Firstly, we demonstrated how we
can express different retrieval models and their variants.Sec-
ondly, we compared the modelling of tf-idf in traditional
SQL vs. PSQL, on the one hand with respect to abstraction,
and on the other hand with respect to performance (scala-
bility/efficiency). Thirdly, we investigated the performance
and suitability of SQL vs. PSQL for estimating probabili-
ties. The main finding of the evaluation is that PSQL scales
better than SQL for probability estimation.

With this paper, we contribute a coherent probabilistic log-
ical layer to DB technology. The technology has been ap-
plied in domains such as financial news mining and expert
finding, and is planned to be applied for crime prevention
and detection. The probabilistic relational layer is capable
of modelling advanced retrieval strategies, and, is in general
suitable for the management of uncertainty and the uncertain
reasoning in large-scale applications.

Acknowledgements:We would like to acknowledge the ex-
cellent and deep reviews that helped improving the ear-
lier version of this paper. We thank Mounia Lalmas for
her thorough editorial pass, and Ingo Frommholz for his
technical improvements and tests. The relational Bayes has
been promoted and funded through the contributions of
CLCUC (Combined London College University Challenge

seed fund) and the technology transfer department of Queen
Mary University of London.

References

[AAB +03] Serge Abiteboul, Rakesh Agrawal, Phil Bernstein, Mike
Carey, Stefano Ceri, Bruce Croft, David DeWitt, Mike
Franklin, Hector Garcia Molina, Dieter Gawlick, Jim
Gray, Laura Haas, Alon Halevy, Joe Hellerstein, Yannis
Ioannidis, Martin Kersten, Michael Pazzani, Mike Lesk,
David Maier, Jeff Naughton, Hans Schek, Timos Sel-
lis, Avi Silberschatz, Mike Stonebraker, Rick Snodgrass,
Jeff Ullman, Gerhard Weikum, Jennifer Widom, and Stan
Zdonik. The lowell database research self assessment,
2003.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das.
Dbxplorer: A system for keyword-based search over re-
lational databases. InICDE, pages 5–16, 2002.

[ACDG03] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and
Aristides Gionis. Automated ranking of database query
results. InCIDR, 2003.

[AR06] Hany Azzam and Thomas Roelleke. Efficient process-
ing of ontological queries. In2nd VLDB Workshop on
Ontologies-based Techniques for Databases and Informa-
tion Systems, Seoul, Korea, 2006.

[AvR02] Gianni Amati and C. J. van Rijsbergen. Probabilistic mod-
els of information retrieval based on measuring the diver-
gence from randomness.ACM Transaction on Information
Systems (TOIS), 20(4):357–389, October 2002.

[BGH88] P. Bosc, M. Galibourg, and G. Hamon. Fuzzy querying
with sql: extensions and implementation aspects.Fuzzy
Sets Syst., 28(3):333–349, 1988.

[BGMP90] D. Barbara, H. Garcia-Molina, and D. Porter. A proba-
bilistic relational data model. In F. Bancilhon, C. Thanos,
and D. Tsichrizis, editors,Advances in Database Technol-
ogy - EDBT ’90, pages 60–74, Berlin et al., 1990. Springer.

[BGMP92] D. Barbara, H. Garcia-Molina, and D. Porter. The man-
agement of probabilistic data. IEEE Transactions on
Knowledge and Data Engineering, 4(5):487–502, 1992.

[BL99] Adam Berger and John Lafferty. Information retrieval
as statistical translation. In SIGIR, editor,SIGIR ’99,
Proceedings of the 22nd International Conference on Re-
search and Development in Information Retrieval, pages
222–229, New York, 1999. ACM.

[BP94] P. Bosc and O. Pivert. Fuzzy queries and relational
databases. InProceedings of the 1994 ACM Symposium
on Applied Computing, pages 170–174. ACM Press, 1994.

[CDHW04] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and
Gerhard Weikum. Probabilistic ranking of database query
results. InVLDB, pages 888–899, 2004.

[CDHW06] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and
Gerhard Weikum. Probabilistic information retrieval ap-
proach for ranking of database query results.ACM Trans.
Database Syst., 31(3):1134–1168, 2006.

[CH79] W.B. Croft and D.J. Harper. Using probabilistic models of
document retrieval without relevance information.Journal
of Documentation, 35:285–295, 1979.

[CP87] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. InProceedings of the 13th International Con-
ference on Very Large Databases, pages 71–81, Los Altos,
California, 1987. Morgan Kaufman.

[CRW05] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard
Weikum. Integrating db and ir technologies: What is the
sound of one hand clapping? InCIDR, pages 1–12, 2005.

[DS04] Nilesh N. Dalvi and Dan Suciu. Efficient query evalua-
tion on probabilistic databases. InVLDB, pages 864–875,
2004.



32 Thomas Roelleke et al.

[DS05] Nilesh N. Dalvi and Dan Suciu. Answering queries from
statistics and probabilistic views. InVLDB, pages 805–
816, 2005.

[dVR05] Arjen de Vries and Thomas Roelleke. Relevance informa-
tion: A loss of entropy but a gain for idf? InACM SIGIR,
Salvador, Brazil, 2005.

[EDR05] Vuk Ercegovac, David J. DeWitt, and Raghu Ramakrish-
nan. The texture benchmark: Measuring performance of
text queries on a relational dbms. InVLDB, pages 313–
324, 2005.

[EN00] Ramez Elmasri and Shamkant B. Navathe.Fundamentals
of Database Systems. Addison-Wesley, 2000.

[FF06] Ingo Frommholz and Norbert Fuhr. Probabilistic, object-
oriented logics for annotation-based retrieval in digitalli-
braries. In Gary Marchionini, Michael L. Nelson, and
Catherine C. Marshall, editors,JCDL, pages 55–64. ACM,
2006.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal
aggregation algorithms for middleware.J. Comput. Syst.
Sci., 66(4):614–656, 2003.

[FR96] N. Fuhr and T. Roelleke. A probabilistic NF2 relational
algebra for integrated information retrieval and database
systems. In M. M. Tanik, F. B. Bastani, D. Gibson,
and P. J. Fielding, editors,Proceedings of the 2nd World
Conference on Integrated Design and Process Technology
(IDPT), pages 17–30, Austin, Texas, 1996. Society for De-
sign and Process Science (SDPS).

[FR97] N. Fuhr and T. Rölleke. A probabilistic relational algebra
for the integration of information retrieval and database
systems. ACM Transactions on Information Systems,
14(1):32–66, 1997.

[FTR06] Jan Frederik Forst, Anastasios Tombros, and Thomas
Roelleke. *solving the enterprise trec task with probabilis-
tic data models*. InProceedings of TREC 2006, pages
xx–yy, 2006.

[Fuh90] N. Fuhr. A probabilistic framework for vague queries
and imprecise information in databases. In D. McLeod,
R. Sacks-Davis, and H. Schek, editors,Proceedings of the
16th International Conference on Very Large Databases,
pages 696–707, Los Altos, California, 1990. Morgan
Kaufman.

[Fuh95] N. Fuhr. Probabilistic datalog - a logic for powerful re-
trieval methods. In E.A. Fox, P. Ingwersen, and R. Fi-
del, editors,Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 282–290, New York, 1995.
ACM.

[GBS01] Torsten Grabs, Klemens Böhm, and Hans-Jörg Schek.
Powerdb-ir - information retrieval on top of a database
cluster. InCIKM, pages 411–418, 2001.

[GBS04] Torsten Grabs, Klemens Böhm, and Hans-Jörg Schek.
Powerdb-ir - scalable information retrieval and storage
with a cluster of databases.Knowl. Inf. Syst., 6(4):465–
505, 2004.

[GF98] David A. Grossman and Ophir Frieder.Information
Retrieval: Algorithms and Heuristics. Kluwer, Mas-
sachusetts, 1998.

[GF04] David A. Grossman and Ophir Frieder.Information Re-
trieval. Algorithms and Heuristics, 2nd ed., volume 15 of
The Information Retrieval Series. Springer, 2004.

[GFHR97] David A. Grossman, Ophir Frieder, David O. Holmes,and
David C. Roberts. Integrating structured data and text: A
relational approach.JASIS, 48(2):122–132, 1997.

[HGP03] Vagelis Hristidis, Luis Gravano, and Yannis Papakon-
stantinou. Efficient ir-style keyword search over relational
databases. InVLDB, pages 850–861, 2003.

[Hie00] Djoerd Hiemstra. A probabilistic justification forusing
tf.idf term weighting in information retrieval. Interna-
tional Journal on Digital Libraries, 3(2):131–139, 2000.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. Discover:
Keyword search in relational databases. InVLDB, pages
670–681, 2002.

[INE] INEX. http://inex.is.informatik.uni-duisburg.de/.
[LCIS05] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and

Sumin Song. Ranksql: Query algebra and optimization for
relational top-k queries. InSIGMOD Conference, pages
131–142, 2005.

[Lee92] S.K. Lee. An extended relational database model forun-
certain and imprecise information. InProceedings of the
18th VLDB Conference, pages 211–220, Los Altos, Cali-
fornia, 1992. Morgan Kaufman.

[LLRS97] L.V.S. Lakshmanan, N. Leone, R. Ross, and V.S. Subrah-
manian. Probview: a flexible probabilistic database sys-
tem. ACM Transactions on Database Systems, 22(3):419–
469, 1997.

[LR04] Mounia Lalmas and Thomas Roelleke. Modelling vague
content and structure querying in XML retrieval with a
probabilistic object-relational framework. InProceedings
of the 6th International Conference on Flexible Query An-
swering Systems (FQAS), LNCS, Lyon, France, June 2004.
Springer.

[LRF02] M. Lalmas, T. Roelleke, and N. Fuhr. Intelligent hyper-
media retrieval. In P. S. Szczepaniak, F. Segovia, and
L. A. Zadeh, editors,Intelligent Exploration of the Web.
Springer-Verlag Group (Physica-Verlag), 2002.

[LZ02] John Lafferty and ChengXiang Zhai.Probabilistic Rele-
vance Models Based on Document and Query Generation,
chapter 1. Kluwer, 2002.

[Mac91] I.A. Macleod. Text retrieval and the relational model.
Journal of the American Society for Information Science,
42(3):155–165, 1991.

[MK60] M.E. Maron and J.L. Kuhns. On relevance, probabilistic
indexing, and information retrieval.Journal of the ACM,
7:216–244, 1960.

[Mot88] A. Motro. Vague: A user interface to relational databases
that permits vague queries.ACM Transactions on Office
Information Systems, 6(3):187–214, 1988.

[Mot90] Amihai Motro. Accommodating imprecision in database
systems: Issues and solutions.Sigmod record, 19(4):69,
1990.

[NJ95] T. Niemi and K. Järvelin. A straightforward NF2 rela-
tional interface with applications in information retrieval.
Information Processing and Management, 31(2):215–231,
1995.

[PC98] J.M. Ponte and W.B. Croft. A language modeling ap-
proach to information retrieval. In W. Bruce Croft, Al-
istair Moffat, C. J. van Rijsbergen, Ross Wilkinson, and
Justin Zobel, editors,Proceedings of the 21st Annual In-
ternational ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 275–281, New
York, 1998. ACM.

[PF95] U. Pfeifer and N. Fuhr. Efficient processing of vague
queries using a data stream approach. InProceedings
of the 18th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages
189–198, New York, 1995.

[RLK01] Thomas Roelleke, Ralf Lübeck, and Gabriella Kazai. The
HySpirit retrieval platform, demonstration. In Bruce Croft,
David J. Harper, Donald H. Kraft, and Justin Zobel, edi-
tors, Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, New Orleans, USA, New York, August
2001. ACM.

[Rob81] Stephen E. Robertson. Term frequency and term value. In
SIGIR, pages 22–29, 1981.

[Rob04] S.E. Robertson. Understanding inverse document fre-
quency: On theoretical arguments for idf.Journal of Doc-
umentation, 60:503–520, 2004.

[Roe99] T. Roelleke.POOL: Probabilistic Object-Oriented Log-
ical Representation and Retrieval of Complex Objects.
Shaker Verlag, Aachen, 1999. Dissertation.



Modelling Retrieval Models in a Probabilistic Relational Algebra with a new Operator: The Relational Bayes 33

[Roe03] Thomas Roelleke. A frequency-based and a Poisson-based
probability of being informative. In Jamie Callan, Gor-
don Cormarck, Charles Clarke, David Hawking, and Alan
Smeaton, editors,Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Toronto, Canada, pages
227–234, 2003.

[RR02] John Grant Robert Ross, V. S. Subrahmanian. Probabilistic
aggregates. In13th International Symposium on Method-
ologies for Intelligent Systems (ISMIS), Lyon, France,
Foundations of Intelligent Systems. Springer, 2002.

[RSJ76] S.E. Robertson and K. Sparck Jones. Relevance weight-
ing of search terms.Journal of the American Society for
Information Science, 27:129–146, 1976.

[RW06] Thomas Roelleke and Jun Wang. A parallel derivation of
probabilistic information retrieval models. InACM SIGIR,
2006.

[RWHB95] S. E. Robertson, S. Walker, and M.M. Hancock-Beaulieu.
Large test collection experiments on an operational inter-
active system: Okapi at TREC.Information Processing
and Management, 31:345–360, 1995.

[SD05] Dan Suciu and Nilesh N. Dalvi. Foundations of probabilis-
tic answers to queries. InSIGMOD Conference, page 963,
2005.

[SKS02] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.
Database Systems Concepts, Fourth Edition. McGraw-
Hill Higher Education, 2002.

[SP82] H.-J. Schek and P. Pistor. Data structures for an integrated
database management and information retrieval system. In
Proceedings of the 8th International Conference on Very
Large Data Bases, pages 197–207, Los Altos, California,
1982. Morgan Kaufman.

[TC90] H. Turtle and W. B. Croft. Inference networks for doc-
ument retrieval. In J.-L. Vidick, editor,Proceedings of
the 13th International Conference on Research and Devel-
opment in Information Retrieval, pages 1–24, New York,
1990. ACM.

[TRE] TREC. http://trec.nist.gov/.
[TWS04] Martin Theobald, Gerhard Weikum, and Ralf Schenkel.

Top-k query evaluation with probabilistic guarantees. In
VLDB, pages 648–659, 2004.

[vR86] C. J. van Rijsbergen. A non-classical logic for information
retrieval.The Computer Journal, 29(6):481–485, 1986.

[WY95] S.K.M. Wong and Y.Y. Yao. On modeling information re-
trieval with probabilistic inference.ACM Transactions on
Information Systems, 13(1):38–68, 1995.

[YLS82] C.T. Yu, K. Lam, and G. Salton. Term weighting in infor-
mation retrieval using the term precision model.Journal
of the ACM, 29(1):152–170, January 1982.

[ZL02] ChengXiang Zhai and John D. Lafferty. Two-stage lan-
guage models for information retrieval. InSIGIR, pages
49–56, 2002.


