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Abstract This paper presents a probabilistic relationas what drives integrated DB+IR? However, as the call says,
modelling (implementation) of the major probabilistic reearly DB+IR attempts date back to early 70s.

trieval models. Such a high-level implementation is usefgjeqpite 4 similar overall aim, namely to process queries
since it supports the ranking of any object, it allows fof ' retrieve results, the fields of DB and IR research devel-
the reasoning across structured and unstructured dat, a’%‘%‘ed differently and in separate communities. DB focused
gives the software (knowledge) engineer control over rankj, oy pressiveness, structure (data records), and datdsnode
ing and thus supports customisation. whereas IR focused on free-text query languages, unstruc-
The contributions of this paper include the specification tifired data, and the inverted list as the ultimate “data nfodel
probabilistic SQL (PSQL) and probabilistic relationaledg for large document collections. Whereas in DB, software
bra (PRA), a new relational operator for probability estimangineering and productivity issues have always been im-
tion (the relational Bayes), the probabilistic relationadd- portant, these are of secondary priority in IR research: an
elling of retrieval models, a comparison of modelling remprovement in retrieval quality is good, whatever the ap-
trieval with traditional SQL versus modelling retrievalttvi proach and effort in person-years needed to achieve the im-
PSQL, and a comparison of the performance of probabilipyovement. Whereas DB usually targets people who build
estimation with traditional SQL versus PSQL. systems or business applications, and therefore, DB had to

The main findings are that the PSQL/PRA paradigm allof£0vide @ useful and, overall, re-usable and generic tdehno

for the description of advanced retrieval models, is statatPdy: IR focused mainly on experimental evaluation of re-

for solving large-scale retrieval tasks, and outperfomagit  t'€val quality and end-user applications.

tional SQL in terms of abstraction and performance regandfe could view the DB+IR efforts as a DB-Technology+IR-

ing probability estimation. Service integration. The technology is strong in flexikgjlit
robustness, abstraction, and the service is strong inmgnki

Keywords Probabilistic relational modellingRetrieval  and presenting retrieved objects, i.e. documents and facts

Models- Probabilistic database©B+IR integration To conclude why DB+IR, and why now, we believe that the

growing need for customisable (“tunable”) search services

- triggers the demand for DB+IR. For building efficiently ef-

1 Introduction fective search systems, IR approaches need to be available
in DB technology, and, the other way round, DB technol-

The call for a VLDB special issue on integration of DB2Qy needs to be ready to host IR methods such as relevance-

(Databases) and IR (Information Retrieval) itself is pialga based ranking, result browsing, and vague predicates.

the best evidence of a new era of DB+IR technology. Wheigyre 1 highlights the current trend along a time-line from

is triggering DB+IR? The call mentions the usual suspecifi-in-one applications in the 70s/80s to three-tier aethi

such as XML, the web, and huge amounts of data. MayRges becoming the standard in the late 80s. Certainly, more
the integration of structured and unstructured data SSUr¢grs can be identified in today’s IT systems, depending on
Thomas Roelleke Hengzhi Wur Jun Wang Hany Azzam the emphasis. Certainly, business logics have a complex
Queen Mary, University of London structure, as the underlying data management systems have.

Mile End Road, London, E1 4NS ; _ti ; ; ;
United Kingdom In the classical three-tier architecture, information aa

Tel.: +44 (0)20 7882 7988 ment (search logic, relevance-based ranking) is maybe best
Fax: +44 (0)20 8980 6533 located at the interface between business logic and DB sys-
E-mail: {thor,hzwoo,wangjun,hay@dcs.qmul.ac.uk tem, where nowadays SQL has its dominating role. In the




2 Thomas Roelleke et al.

User User Non—probabilistic Bayes Probabilistic
Interface Interface —
database database
Business Business
Logic Logic Fig. 3 Creation of probabilistic databases
Application Mall—in—one"
@dng\ hi deals with the logical | d isel
Information This paper deals with the logical layer, and more precisely,
<SQD \ / the paradigm of probabilistic relations, probability aggr
gation and estimation, and the probabilistic relationatimo
Data Data elling of retrieval models. Probabilistic database modets
well established, and we will review prior research in the
. . . next section. Our contribution is the formalisation andhhig
all-in—one three—tier four—tier

_ _ o level implementation of retrieval models. This supports th
Fig. 1 Data and information independence customisation of search strategies. For implementing re-
trieval models solely by means of a probabilistic relationa
model, we required and developed a new operator, the rela-
External Information sorted by relevance tional Bayes. With the Bayes operator, probability estima-
layer tion is nowwithin the probabilistic relational paradigm.

This contribution is highlighted in figure 3. The relational

:_aogel::al E;gggg:::?ti;ﬁﬁggi Bayes[]() Bayes allows to describe the estimation/generation of-prob

Y y Stiod abilities from a non-probabilistic database - an important
Physical . functionality for generating probabilities in a coherentla
layer Relational model/algebra; SQL comprehensive probabilistic relational algebra.

Fig. 2 External, logical and physical layers
1.1 Outline of this Paper

four-tier architecture, we leave it intentionally open whier  The outline of the paper is as follows:

SQL still plays its role as it used to, or whether it plays a new, Background

role. It will play a role, but the evaluation of SQL might be 5 Running example

richer, more effective, in the sense that only the importanj Requirements

tuples are returned to the business logic, the tuples will bg Probability aggregation

sorted by relevance, and for this, the business logic needs Probability estimation: The relational Bayes

be able to specify what it means by “relevance”. 7  Probabilistic relational modelling of retrieval models
As we will demonstrate in this paper, traditional SQL is al-8  Evaluation

ready suitable to fulfill such task, like an assembler laggua 9  Frequently asked question

is capable of developing an accounting program with aweld0 Summary and conclusions

inte;rface. Though capable, for' obvious reasons, the _apF'#'he sections can be grouped and described as follows:
cation programmer prefers a higher level and more tailored

language than assembler. This highlights the motivation feart 1: This general part contains background, running ex-
our research: We are working on data models and SQL vari- ample, and requirements.

ants that are tailored to information management tasks. part 2: This technical part introduces PSQL (probabilistic

To position the probabilistic SQL (PSQL) and the proba- SQL) and PRA (probabilistic relational algebra). Sec-
bilistic relational algebra (PRA) presented in this papen- tion 5 deals with probabilityaggregation this can be
sider figure 2. There is an external layer where information considered as a review of state-of-the-art PRA. Section 6
can be accessed, sorted by relevance. Then, there is allogica@dds probabilityestimation(the relational Bayes) to the
layer in which the information space and retrieval stragegi ~ Probabilistic algebra.

(ranking functions) are modelled. Finally, there is a physPart 3: Section 7 shows the modelling of retrieval models in
cal layer, which is here the relational model/paradigm. Al- PSQL and PRA. _

though the traditional relational paradigm has all the espr Part 4: Section 8 evaluates PSQL/PRA. For this, we com-
siveness needed (like an assembler language has all the exPare PSQL with traditional SQL, and demonstrate the
pressiveness needed), to improve the productivity in devel gain in abstraction, while showing that there are effi-

oping information management/search applications, we add ciency gains as well.
the logical and the external layers. Part 5: Sections 9 and 10 conclude the paper.
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2 Background cessing with top-k ranking. In addition to presenting the
benchmark, the performance numbers for three commer-
. cial DBMSs and their support for text in current relational
2.1 IR with SQL database systems are analysed.
Over the past two decades attention has grown towards the

integration of IR ranking techniques into SQL. In fact, ip.2 Probabilistic Databases

has been labelled as one of the major challenges facing the

community nowadays [AABO03]. While one of the earliest
efforts to address this integration date back to [SP82] a
[CP87], more recent work can be found in [GFHR97] whe
the classical relational model is used to achieve basie in

He research efforts towards the integration of DB and IR
as led to important findings in the area of probabilis-
peg database technology. It was quickly realised that prob-

gration of structured data and text. Specifically, the Baple 2P/iStiC data models are essential for this integration be
retrieval model is implemented using standard SQL. Oth%?uvs; %fotdheellsr i?anaBbmé)c/)nosfemLthﬁ?mﬂgbg::(gri ee ﬁ'glses?élget- o
systems that implemented the same model are DBXpIoH—JF . Lo a Y, P

[ACDO02] and DISCOVER [HP02]. Both retrieval Systemgneasure imprecision in large-scale data, return top-Ktsesu

are built on two different commercial databases, but rely (z@ﬂsite}'snséﬁgg §|f t)r}iethvr\;?sleo:gitb?; r:fgggrs diarlmn? m?lglﬁaubsie of
a similar architecture to support keyword search. -arly resp 9 P : gly, p .
tic databases conveyed a message that the overall quality of

Unlike [ACD02] and [HPO2], [HGPO3] is not just capable o{jata has been improved, and the processing time for queries
supporting Boolean-AND semantics, but also Boolean-Ofys drastically decreased by returning top-k results subse

mantics. However, more effective retrieval models, tfik : . . .
semantics. However, more effective retrieval models, egearly work extending relational and object oriented data

idf (term frequency - inverse document frequency) can odels using the fuzzy set and the possibility theory was
implemented. For example, [5BS01, GBS04] introduce t GH88]. The notion of quality of databases and its es-

PowerDB-IR system, which is an IR system built on top ation using a probabilistic approach was discussed in

a database cluster. It implements the tf-idf-based model .
mapping it to SQL. Furthermore, [ACDGO3] attempts to ap- 0t88], where the relational model of data was extended
’ ! ?nd a quality specification with each relation instance was

ply IR models on database to resolve the “Empty Answe ssociated
problem by extending the IR-based tf-idf concepts and &2 :
veloping an idf similarity for database ranking. Another crucial aspect of probabilistic databases iseel&d

Conversely, [COHWO4,CDHWOG] attempt to solve tnETeent duery aation, This aspect has ben discunsed
“Many-Answers” problem by using probabilistic rankin ’ y PP

of query results, which is another approach for ranking h/complex SQL queries on probabilistic databases and pro-

databases. This approach will be further discussed in tHacs &N optimisation algorithm that can efficiently coneput
next subsection. [LCISO05] introduces RankSQL, which Ost queries. In addition, a tutorial, Foundations of Prob-

a RDBMS that fully integrates ranking support as a ﬁrsgl ilistic Answers to Queries given by Suciu and Dalvi at

class functionality. A framework is introduced to suppdtt e GMOD .05 lllustrates a S?‘ of probabilistic query answer- .
ficient evaluations of top-k by extending relational alg;ebrmg techniques that underlie several recent database-appli

S . D ations [DS05]. One of these applications is discussed in
and query optimisation. This approach is different from t : oo :
typical DB and IR approach because it does not focus xRe%G] L\j\;hrergxusrg]gsfgr?gib'slf“CedS?é%b:SSiS ?g%?ls?g W;:)TJEO
how to rank tuples (apply IR models), but focuses on op or effi?:ien%/retﬁeval of lar e-s?:%le semanti(F:Jdata k
mising the returned ranked-list of the results. 9 '

A re-innovated look at the integration of structured dateé arj1: inally, below is an example adapted from [SDOS], which

text can be found in [CRWO5], which provides a deeper uﬁlgmonstrates ;he usage of probabilities in databases. Con-
! fialer the following table of person data where for the pesson

derstanding of the requirements and possible system ar@i = : .
tectures to achieve such an integration. Moreover, theiimp iklau and Bala, we are uncertain about their affiliation and

tance of the probabilistic approach for DB+IR integratisn pate:

emphasised in this work. Student
Finall b h K i h | . f diti | Name | Affiliation [ State| Area

inally, a benchmark for the evaluation of traditional ap- ViKao T OW WA | Data Security
proaches for the integration of IR with SQL has been in- Miklau | Umass MA | Data Security
troduced in [EDRO5]. The benchmark, called the TEX- Dalvi uw WA | Prob. Data
TURE Benchmark, introduces queries with relevance rank- Ea:a H\# \'\/AV': Ba:a g:reams
H H - : : _ t H f ala ata streams
ing, like text-only queries, single-relation mixed qusrand Bala Umass MA | Data Streams

multiple-relation mixed queries, rather than those that ju

compute all answers. Most importantly, the queries are faf-{Namg} is viewed to be the key, then the key condition is

mulated using the “CONTAINS” operator. This operator efiolated because of the multiple occurrences (inconsigfen
ables the seamless integration of text and relational pisFtuples with the same key.
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For the query short-comings. The initial probability estimation is mtidd
. “outside” of the algebra, and, the “how” of the aggregation
SELECT * FROM Student WHERE State = "WA'; of uncertainty values is specified. The “outside” nature of

. . ) the probability estimation was viewed by designers and de-
we could either retrieve the consistent tuples only, or %Iopers, who used PRA, Datalog and other languages, as a
softer (ready to accept false hits), and retrieve incoeBtStshortcoming. Also, if a model allows to specify the “how”
tuples as well. of the aggregation of uncertainty values, then we model on a
For quantifying the inconsistency in a probabilistic wary, aphysical (assembler-like) layer rather than on a logicatia

intuitive approach is to assign probabilities based on thgavious works ([BGMP90], [Lee92] and [FR97]) define
number of inconsistent tuples: variants of PRA where the focus is on the definition of the
probability aggregationfor the five basic relational oper-

Student

Prob [[ Name | Affiliation | State | Area ators (selection, projeqtion, join, union, sub;r'a(':tion')th

55 T Mikao T OW WA | Data Security the Baygs operator, th_ls paper adds pro_babdﬂymatlon

0.5 || Miklau | Umass MA | Data Security Probability estimation is with Bayes “inside” PRA. Bayes
1 || Dalvi uw WA | Prob. Data provides ways to specify the “what” of frequency-based and

0.33 || Bala | UW WA | Data Streams information-theoretic probability estimation. The “houg

8:23 EZ:: Mr'\:ass MQ gg:g Sgggm: controlled in the physical layer of PRA.

An important aspect of a PRA is highlighted by [RR02]: At-
As we will point out in section 6 on probabilistic SQL, theribute value aggregation (sum, average, maximunyris
approach mentioned above is one way of estimating prahegonalto probability aggregation! This stresses again that
abilities. We also define in this paper the notion of evihe aggregation of uncertainty values shontit be imple-
dence key: herefNamé forms the evidence key, and themented in a logical layer of a PRA.

';;Jple]\;:)robabnlnes are conditional probabilities of ttearh Another aspect of PRA is the discussion of INF versus
(r|Name). NF2 (non-first-normal-form) nature of probabilistic rela-
We have reviewed a number of approaches dealing witbns. This discussion is closely related to the discussion
probabilistic relations. One of the contributions of th& p whether a probability is assigned to a tuple, or whether a
per is to define and evaluate a probabilistic SQL technologyobability is assigned to an attribute value (see [NJ95],
for large-scale probabilistic databases. [FR96], and [RR0O2]). NF2 relations are expensive in pro-
cessing and the experience with the INF PRA proved that
NF2 modelling is not a pre-requisite for effective usage of a

2.3 On Probabilistic Relational Algebra and Probability PRA model.
Estimation

The relational algebra, the processing basis of SQL, is o2€ Retrieval Models
of the pillars of database technology. However, from an
IR and uncertainty management point of view, the rel

ional algebra lacks rel based ranki  retriewed Retrieval models form a crucial part of information
tional algebra lacks relevance-based ranking of retri retrieval. We mainly distinguish between two classes:

jects. Therefore, many probabilistic extensions for tha-re n,,_nronapilistic and probabilistic models. On the non-
tional algebra have been defined: see [CP87] on pmbab'“%tgbabilistic side, tf-idf is the dominant model, and on the
dfatabases, [Mot88,Mot90, Fuh90,BP94] on vague querigshapijistic side, the binary independent retrieval mode
(fuzzy predicates), [BGMP90] and [BGMP92] on probaz,q janguage modelling are the main candidates. Probabilis

gg‘;gﬁ r[el\l/la;ifgnf]“ é?]otiilt“?gt’riEaLveaﬁ%ﬂ dophgrfe?ZES%ﬁ 4elic models come with a theory and some heuristics, whereas
! . . “1on-probabilistic models are mainly based on heuristics.
[FR97] on a PRA for the integration of database and in- P y

formation retrieval, [NJ95] and [FR96] on NF2 relations?’robabilistic models date back to [MK60]. Probabilistic
[Fuh95] on probabilistic Datalog, [LLRS97] on the ProbModels try to estimate the probability of a document being
View system, [GF98] on text retrieval with SQL, and [RR02judged relevant to a particular query. This is denoted as the
on probabilistic aggregates. probability of relevance’(r|d, q). Because there is no di-

. rect quantitative method to estimate the relevance prébabi
One may Wondgr why did S0 many researqhers looked at 7 there are various methods to estimate the relevande pro
problem of adding probabilities to the relational datak@se ability. In the late 70s, [RSJ76] established the Binaneind
This is due to the fact that probabilistic relational algebipendent Retrieval Model (BIRM). From the middle to end
(PRA) is a powerful candidate for modelling intrinsic uncer80s, [VR86] initiated approaches to model IR as the prob-
tainty of knowledge. Eventually, this can be used for moawbility P(d — ¢) of a non-classical implication between
elling an estimate of the relevance of retrieved objectsvHodocuments and queries. Early 90s brought the inference net-
ever, most of the aforementioned models share at least twork model [TC90], middle 90s contributed ti&d — q)
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Person Coll
Name | City | Nationality Term [ Docld
Peter London German salling | docl
Paul London Irish boats | docl
Mary London Irish sailing | doc2
Thomas| Dortmund | German sailing | doc2
Thomas| London German boats | doc2
Thomas| Hamburg | German | sailing | doc3
Hany London Egyptian east doc3
Hany London Polish coast | doc3
Jun London Chinese sailing | doc4
Zhi London Chinese boats | doch
Fig. 4 Relational table for modelling persons Fig. 5 Relational table for document retrieval

framework [WY95], and late 90s to early 2000 brought Ian-[he term “sailing” occurs in four documents, “boats” occurs

guage modelling ([PC98], [BL99], [ZL02], [LZ02]) and di- inthree document“s, a_lr]d ‘:’east" and “_coagt" occur in one doc-
vergence from randomness ([AVR02]). ument. The term “sailing” occurs twice in document doc2;

o ) ] ) otherwise, all term occurrences in documents are single oc-
In probabilistic information retrieval models, an impaorta ¢ rrences.

aspectis how to estimate the term weight, possibly related t . ld ieval task. f le. find all d
the probability of relevance. Without relevance inforroagi A tyPical document retrieval task, for example, find all doc-

we can estimate the term weight vitf. [CH79], [YLS82], uments about sailing boats, can be easily expressed in SQL.

[Rob81], etc. have investigatedf heuristics against the Before expressing document retrieval, we give a simple
probabilistic model. More recently, [Hie00], [Rob04], andiUery on “Person”, to illustrate the analogy between tradi-
[RWO6] highlighted relationships between the three malfPnal data retrieval and document retrieval:
classes of models: tf-idf, BIRM, and LM. In particular, the
research on the relationships of models provides inpuiso th
tionships of models isolates the common components (prob-

ability estimations) in models that are the basic ingrefdierSELECT Name

; ; FROM Per son
for modelling retrieval models. VWHERE Nationality = ' Chinese'

OR Nationality = "Polish;

Find all persons of Chinese or Polish nationality.

We could also view the nationalities as query terms. Assume
we have a relation “Query(Term,Queryld)”. Then:

3 Running Example
I NSERT | NTO Query VALUES
. . . . ' Chi ", 'ql’), ("Polish’, "qgl1");
This section contains a toy database with two tables, a {a— tnese ar’). ("Polis al’)
ble named “Person” containing data about persons, angéxt, we join the “Query” table with the “Person” table and
table named “Coll” representing a document collection. Watrieve the attribute Person.Name:
use these two tables to underline that the SQL-based and
PSQL-based implementations investigated in this paper &w@-ECT Person. Name

. ; XOM Query, Person
?rgeg\:]/;nenc nature, and are not restricted to document (%PERE“ Query. Term = Person. Nati onal i ty:

Consider the table “Person” in figure 4. For this table, weompare the above formulation with the next one showing
will show how to describe in PSQL probabilities such agocument retrieval for all documents about sailing boats:

P(NationalityCity). The contribution of our paper is to adgw_SERT | NTO Query VALUES

appropriate concepts to SQL, and to prove that the estimag ;| i ng', 'q2'), (' boats’, 'q2'):
tions are applicable in large-scale applications with ol
of tuples. SELECT Docl d
. L . FROM Query, Coll
To illustrate the application of PSQL to the classical IH(tas,wEREQJQJe¥y, Term = Col . Term

of text retrieval, we use the table/relation “Coll” shown in

figure 5. Our toy collection has ten tuples, four terms (sail-he structures of those queries are very similar. If we had
ing, boats, east, coast), and five documents (docl to docb)standard SQL++ (SQL++ stands here for a SQL with
The single horizontal lines we use in the instance (tuple) paelevance-based ranking) that sorts the retrieved tuples b
of a table are here to help the reader to locate the tuples tte@évance, then we could easily obtain a ranked retrieval re
belong to one document. sult.
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We will extend in section 8 on how tf-idf-based retrieval (tf0. 4 (' sailing’, 'g2’), 0.6 (' boats’', ’'q2');
idf is probably the most known, easy and effective rankin )
method) could be implemented in traditional SQL. Ho §ELE-CI-I'IE' \é:)Ewre”' eved AS
- . . cld
ever, though the traditional SQL is capable of modellingzow pr obQuery, probcol |
relevance-based ranking, the implementation has what G#ERE pr obQuery. Term = probCol | . Term
maybe best described as an “assembler-like” feel, since we
describe in SQL the arithmetic to compute the retrieval stgrthe view “retrieved”, we obtain:

tus values. From an abstraction point of view, and from a

probabilistic modelling point of view, this is not satisfary. retrieved
We require a more abstract and tailored SQL++, and there- Prob || Docld
fore we introduce and investigate in this paper a probaiailis 0.4-05 || docl
version of SQL. 0.6-0.5 || docl
0.4-0.66 || doc2
An intuitive probabilistic approach would work with 0.6 - 0.33 || doc2
probabilistic relations “probQuery”, “probPerson”, and 0.4-0.33 || doc3
“probColl”. Let these three relations be probabilisticarel 8?5 : %'8 gggg

tions in which tuple probabilities somehow (we extend later
in the paper in detail how) reflect importance/relevanc&
For example, consider a possible instantiation of tahl
“probColl” in the following.

emains the question of how to aggregate the non-distinct
Sples per document. A probabilistic disjunction seems rea
sonable. For this we could argue for ‘disjoint’ (add proba-

probColl bilities), ‘independent’ (add probabilities and subtrpuaib-

Prob [[ Term [ Docld ability of intersections), or ‘subsumed’ (choose maximal
0.5 |[ sailing | docl probability). The assumption made for the aggregation will
0.5 || boats | docl depend on the assumptions made when assigning (gen-
0.66 || sailing | doc2 erating!) the probabilities in the relations “probColl” can
0.33 || boats | doc2 « ”

0.33 || sailing | doc3 probQuery”.

0.33 || east | doc3 The aims of this paper are to formalise PSQL, to show the
0'138’ °°‘5|‘5t gocj PSQL to PRA translation, and to investigate whether we can
10 Ei!tnsg d825 model state-of-the-art retrieval models in PSQL/PRA. In ad

dition, the question is whether PSQL/PRA is scalable, and
The tuple probabilities here are a result of viewifigerm, whether we gain an efficiency advantage compared to tradi-
Docld} as afrequency keyand{Docld} as an - what we call tional SQL.

later - evidence keyTake document doc2. It has 3 tuples,

thus,1/3 = 0.33 is the base probability of each doc2 tuple.
With the frequency key (Term, Docld), two sailing tuples co; Requirements
incide, and if we add their probabilities, then we obtain the

probabilistic tuple0.66(sailing,doc2) in table “probColl”. . _
The double vertical line separates the probabilities frben tC1aSsical approaches to probabilistic databases focus on

ordinary attribute values. The double line underlines thRfoPabilityaggregation They rely on “some external appli-
probabilities are different from ordinary attribute vasue Cation” (this is how a peer colleague referred to if) to esti-

The columrProbcannot be referred to in probabilistic SQL.Mate initial tuple probabilities. Once the initial probéiies
are available, it appears straight-forward to define folheac

The probabilities in “probColl” reflect a conditional proba a|gebraic operator reasonable probability aggregation-fu
bility denoted asP(t|d), i.e. the probability that the term tjons.

occurs given the documernit This probability is related to
whatis known in IR a#f (within-document term frequency).

The main problem with this approach is that external ap-
) plications estimate probabilitiesutsideof the probabilistic
Assume for now that there is an operator that producg§ational paradigm. Inside the classical probabilistizas
“probColl” from “Coll” (this is the role of the relational jona| paradigm, there is no operator, no support, and ne con

Bayes, section 6). Further, assume that we can assign quesyfor estimating probabilities from a non-probabilestr
term probabilities, where the query term probabilities reygpapilistic relation!

flect the inverse document frequenddf) of a term. Let . L -

sailing be more frequent than boats, hence we obtain G@nSider the estimation of probabilities from the non-
“probQuery” a lower probability for sailing than for boatsPropabilistic relation “Coll(Term,Docld)" in figure 5. The
Join “probQuery” and “probColl” in a probabilistic SQL en-requirement is to assign probabilities to tuples that reflec

vironment, and we have implemented something very cloRgpbabilities such acou(t|d), Poou(dlt), Poou(t) and
to tf-idf-based retrieval. Pcoul(t,d), wheret is a term, and is a document. The sub-

script of the probability function indicates the relatioorh
I NSERT | NTO probQuery VALUES which the probabilities are generated or estimated.
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Such probabilities can be estimated in various ways. OBefinition 2 Tuple-based probability:
important feature of an estimation is whether the estimmatio

is based on nr((h,€), R)
Prr(hle) = —22 = 1
T,R( |€) nT((-,e),R) ( )
— thetuple frequencyor
— thevalue frequency © end of definition

We illustrate the two different frequencies with some exanfror example, let be a value of the key Coll[Term], and let
ples. d be a value of the key Coll[Docld]. Then, we obtain the

Tuple frequency: We estimate the probabil®y ¢, (t|d), following tuple-based prabability:

where the subscrigl’, Coll indicates that the tuples of re- no((t, d), Coll)
lation “Coll” form the event space. One intuitive choice t@ ¢, (¢|d) = ———— =~
estimate such probability is the maximum likelihood esti- nr((+,d), Coll)
mate, namely the number a@ktuples in whicht occurs. ) ) ) )
For example, we haveé®; o (sailingdocl) = 1/2, and Here,r = (¢, d) is atuple instance, and= (-, d) is a partial

)

Pr.cou(sailingdoc? = 2/3, since docl occurs in two tu-instance, where the centered dot means to discard the first
ples of which sailing occurs in one, and doc2 occurs in thrééribute value.

tuples of which sailing occurs in two. For the relation “Coll’, we obtain for ex-
Value frequency: We estimate the probabilitfMPle:  Pr.cou(sailingdoc?) = 2/3, since

Py.conpocra)(t), i-€. the probability thatt occurs in nr((sailingdoc2), Coll) = 2, andnz((-, doc2), Coll) = 3.

the value-based event space formed by the values TiRe tuple-frequency-based probabiliB(t|d) is crucial to
Coll[Docld]. The subscriptV, Coll[Docld] indicates the |R; it corresponds to the so-called within-document teren fr
value-based event space for the value key Coll[Docld] dfuency (tf) of a term. We refer to tuple-frequency-based
we base the estimation on the value space that is formedgdgbabilities for short as tuple-based probabilities.

the distinct documents, then, we have five values, and W& Sther crucial probability in IR is the probability(t),

obtain, for example Py, coupocraj(sailing = 4/5. Note namely the probability that term occurs. Here, both tu-
that this value frequency-based probability is differentr | dvalue f based probabiliti A
the tuple frequency-based probability, where we obtafic 210 value frequency-based probabilities are common. As
P (sailing) = 5/10 ' we will see in section 7 on modelling retrieval models, the
T.Colli> 9 - : value-based probabilit’y: c.ou(pocrq () is fundamental to
As we will see in section 7, both, tuple and value frequeshe binary independent retrieval model, and the tupledase
cies are essential for modelling retrieval models. We coprobability Pr. -, (¢) is fundamental to language modelling.
clude this section with a formalisation of tuple and valu

frequency. For counting the number of values with which a partial tu-

ple is associated, we need a further notation. We refer with
ny (h, R[E]) to the number of E-values (evidence values)
Definition 1 Tuple frequency: Letny (7, R) denote the tu- With which the hypothesis kel is associated. We define the
p|e frequency' i.e. the number Djp|es(hence’ thel” sub- Value frequency forma”y, and keep the def|n|t|0n ana|OgOLIS
script) in relationR, that match the partial tupte, where a to the definition of the tuple frequency (see definition 1).
partial tuple is a tuple with some unspecified attribute ®alu

Definition 3 Value frequency: Letny (h, R[E]) denote the
value frequency, i.e. the number of values in KejF] that

are associated with the hypotheaisvherer is a list of at-

¢ end of definition

For example, for the partial tuple = (salling-), tribute valuesR is arelation name, anfl is a list of attribute
nr((sailing -), Coll) = 5 is the number of tuples in relationNames.
“Coll” that match the partial tuplésailing -). & end of definition

For the unspecified tuple, we obtain the number of tuples
in the relation, i.eNp(R) := nr((-,,...), R) is the total For exampleny ((sailing), Coll[Docld)) = 4 is the number
number of tuples in relatioR. of documents (values of attribute Docld) in which sailing

Leth = hy...h, ande = e; . .. e, be lists of attribute val- 9CCUrs.

ues. For examplgy = sailing ande = docl are lists (lists The use of upper-cask in the definition of the value fre-
with just one element) of attribute values. We chasand quency, as opposed to the use of lower-case the defi-

e borrowing from the notion of 'hypothesis’ and 'evidencehition of the tuple frequency underlines thatrefers to at-
used in the Bayes theorem. tribute names, whereagefers to attribute values.

Then, the tuple-based probabiliBt r (h|e) estimated based Next, we define analogous to definition 2 the value-based
on the tuples in relatiof is defined as follows: probability of a hypothesis.
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Definition 4 Value-based probability: to the syntax of classical SQL, apart from few minimal ex-
tensions. For example, in the PSQL SELECT statement, one
P (h) = ny (h, R[E]) (3 ¢an specify thaggregation assumptionhich is one of ‘dis-
V-RIERNY ™ "NU(R[E)) joint’, ‘independent’, or ‘subsumed’. Consider the spexifi

tion of the PSQL syntax in figure 6. Terminal symbols are in-
¢ end of definition  dicated by single quotes. We present the SELECT statement

only, which is sufficient for the purpose of this paper.
For example, let be a value of Coll[Term]. Then, we obtain

ny ((t), Coll[DoclId]) psqlSelect ::= 'SELECT aggAssumption sqlTargetList
Py.coilpocra)(t) = ’ (4) ‘FROM'’ relationList
’ Ny (Coll[Docl d]) ‘WHERE’ sqglCondition

» aggAssumption ::= assumption
Compare the value-based probability above to the tuple- assumption ::= ‘disjoint| ‘independent]| ‘subsumed’

based probability below: sqlTargetList ::=.. as in SQL ...
relationList ::=... as in SQL ...
nr((t,-), Coll sqlCondition ::=... as in SQL ...
Pr.cou(t) = M (5) _ _
Nr(Coll) Fig. 6 Basic PSQL Syntax

The difference between tuple-based and value-based proba-
ilities is illustrated for the attribut [T in tHel- . . .
bilities is illustrated for the attribute Coll[Term] in thie For processing PSQL, PSQL is translated to PRA, and this

lowing table: translation constitutes the semantics of PSQL. Figure 7
Term Probabilities shows the PRA syntax, and the semantics of the PRA ex-
tuple-based value-based pressions (PRAE: probabilistic relational algebra expres
sailing 5/10 /5 sion) will be defined after the PSQL to PRA translation.
boats 3/10 3/5
east 1/10 1/5 prae ::= Selectiof Projection]
coast 1/10 1/5 Product| Union | Subtraction

Selection ::="Select’ T’ praCondition T (" prae 'y

We have discussed the requirements on probability estima- Projection ::= N o n
tion in general, thereby relating the discussion and exasnpl Prcijrggf?}:a};sj‘l%ﬁ’;,ogss[u%ggg';]g?(,“;rs;e] ,’,(p'?gze,),)

to the probabilities typically required by retrieval moslel Union ::="Unite’ assumption '(’ prae ', prae ')’

Before we develop in section 6 the means to describe prob-  Subtraction ::="Subtract’ assumption ’(’ prae ', prae )’
ability estimation in the probabilistic relational framesk,

we look in the next section at probability aggregation.

Fig. 7 PRA Syntax

5 PSQL and PRA: Probability Aggregation: Classical ~ This syntax shows that basic PRA is — apart from the
Operators non-terminal “assumption” — structured as traditional(no

probabilistic) relational algebra.

In this section, we present PSQL and PRA. We include the . _
basic and composed operators, and show how probability &gt.2 Translation of PSQL to Basic PRA
gregation works.

Figure 8 illustrates the translation of PSQL to PRA,
and figure 9 shows an example. The example matches a

5.1 Basic Operators query index Query(Term,Queryld) against a document in-
dex Coll(Term,Docld).

For the basic operators, we present the syntax in sddie illustration and the example underline that the trans-
tion 5.1.1, the translation of PSQL to PRA in section 5.1.fation works very much as usual. The only difference
and the semantics of the basic PRA operators in ség-the probabilistic assumption: The aggregation assump-
tion 5.1.3. tion “aggAssumption” becomes the assumption of the
algebraic projection that “selects” the target attributes
specified in the SQL SELECT statement. The sqglSe-
lect is translated into an algebraic expression of the
form Project[...](Select][...](Multiply(...))), wherehe alge-
This section presents the formal definition of the syntax bfaic ‘Select’ captures the sglCondition, and the algebrai
basic PSQL and PRA. The syntax of PSQL is very simildProject’ “selects” the target attributes. In the papempep

5.1.1 Syntax of PSQL and Basic PRA
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-- PSQL
SELECT aggAssunption sql Target Li st / / 11
FROM . .. o 11 T1 -
VWHERE sql Condi ti on;
# PRA
Proj ect aggAssunption[ praTarget Li st] (

Sel ect [ praCondi ti on] (

Ml tiply(Miltiply(...));

# The Multiply(...) expression captures the Fig. 10 Assumptions: independent, disjoint and subsumed

# relations in FROM ...

Fig. 8 lllustration of the translation of PSQL to PRA . . L
g Q For these three assumptions, the aggregation of probesilit

-~ PSQL exanpl e for the disjunction (union), conjunction (intersectiomda
SELECT DI SJO NT negation of events is as follows:
Queryld, Docld
FROM Query, Col | P(7;) + P(1;) — P(1) - P(7})
VWHERE Query. Term = Col | . Term P( y ) - if independent
# PRA of the PSQ exanple T P(n) + P(ry) if disjoint
Proj ect disjoint[$2,$4]( max({P(r;), P(7;)}) if subsumed
Sel ect [ $1=%1] ( .
Mil tiply(Query, Coll))); P(7;) - P(75) if independent
P(riAT;) =40 if disjoint
Fig. 9 Example of the translation of PSQL to PRA min({P(r;), P(r;)}) if subsumed
P(r;)- (1= P(ry)) ifindependent
o P(1;) if disjoint
case “SELECT” indicates a PSQL statement, whereas “Se- P(7:) — P(7) if subsumedh
lect” indicates the PRA operator. P A=) = P(r;) > P(r;)
0 if subsumed

: . P(r) < P(75)

5.1.3 Semantics of Basic PRA Operators

Next, we formalise the five basic relational operators. The
A probabilistic relational algebra expression (PRAE) gl definitions are composed as follows: Each definition starts
a probabilistic relation. A probabilistic relation is a paiwith an assignment of the forifi’, P) = syntactic PRAE,
(T, P), whereT is a set of tuples and is a probability where (T, P) is a probabilistic relation (set of tuples and
functionP : T — [0; 1], i.e. P maps each element (tuple) ofprobability function), and the right side is a syntactiatfoof
T to a value (probability) of the intervéo; 1]. the respective relational algebra expression. The defirgti

Some may view the specification &f andT redundant, in foF 7’ and P’ give the semantics of the PRAEs. Relational
the sense that we could viei as the set of tuples with operators are applied to arguments (probabilistic rata)io

P(r) > 0. However, tuples with probability equal to ser@nd we used” and “b” to refer to the argument relations.
arein a relation, i.e.m € T holds, and this is different We start with the definition of the selection.
from tuples that are not in a relation. As a first example
of the meaning of zero probability tuples, consider a rel®efinition 5 Selection:
tion that contains terms, and the tuple (term) probabibty r P) = ‘Select[condition]¢)
flects the percentage of documents in which the term occurs.
The term space might contain terms that do not occurinany 7 .— {77 € Ta A (1)}
document. By simply discarding zero probability tuples, We ).

: . 2 (1) := Py(7)
would loose information. For example, we will point out for
the relational Bayes how to compute a notion of “being in- ) )
formative”. A term that occurs in all documents is not infort1€7€.» represents the semantic truth value function that cor-
mative, i.e. in the occurrence-based term space, such a t&fFPONdS to the syntactic “condition” in the selection.
has a probability ofi.0 (occurs in all documents), whereas he probabilistic relatiofiT", P) is the result of the selection,
in the informativeness-based term space, such a term had(7,, P,) is the probabilistic relation of the argument re-
the probability0.0. Therefore, we distinguish between tulation “a” of the selection.
ples with probability zero, and tuples that are not part of a
relation.

Before we define the relational operators, consider figure E6r example, Select[$1=sailing](Coll) is a selection oa th
illustrating the set-based meaning of the common prolsbilrelation “Coll”, and the tuples with “sailing” in their first

n o w

tic assumptions “independent”, “disjoint” and “subsumed’tolumn are selected.

¢ end of definition
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This first definition does not manipulate the probabilor example, assume the following relation to be given:
ities of the selected tuples. However, there are cases

where a selection generates probabilities. For exampie, co docFreqSpace

sider avague selection such as Select[$price IS LOW Prob || Term [ Docld
& $mileage 1S LOW](cars). Here, “IS LOW” is a vague 8-% f)?)gtnsg gggi
predlc'ate. Vague predlcates”(also ref'err_ed to as vague 0.2 [ sailing | doc2
selections) generate probabilities. This is the field of 0.2 || boats | doc2
Fuzzy SQL. Fuzzy SQL can be expressed in probabilis- 0.2 |[ sailing | doc3
tic relational modelling. The expression Select[$price IS 0.2 | east | doc3
LOW](cars) could be viewed as a composed operation Se- 0.2 || coast | doc3

lect[](Join[$price=$price](cars,lowPrice). The empondi- 8:3 f,i';'{‘sg Sggg‘

tion of the selection indicates that this modelling of a vagu
predicate can be viewed as a complex condition pushirthe relation has a constant tuple probability reflecting the
where the vague predicate leads to a join expression jogrobability to draw a document from the document space
ing cars with a probabilistic relation “lowPrice” to modelthe set of five documents). We show the relational descrip-
the probability that a price is low. The modelling of vaguéion of the probabilistic relation “docFreqSpace” based on
predicates is discussed in [FR97]. the non-probabilistic relation “Coll” in section 6, when we

Next, we define the projection, an operation that perforrigve the relational Bayes defined.

probability aggregation. The definition highlights an impo The PRAE “Project disjoint[$1](docFreqSpace)” projeats o
tant difference to the work in [FR97]. The probabilistic asthe first column and forms the sum of non-distinct tuples that
sumption for specifying the probability aggregation is@sscoincide in the disjoint projection. We obtain the followin
ciated with thealgebra operationwhereas in [FR97], the probabilistic relation:

probabilistic assumption is associated with each tupis, th

being achieved by assigning so-called event-expresstons t dfTermSpace = Project disjoint[$1](docFregSpace)
tuples. The event expressions allow for a delayed probabil- Prob || Term

ity computation, and, overall, they allow for an intensibna 8-2 Ea"'tng

semantics of the probability computation. These are pow- oo || coat

erful features. However, the intensional case leads te scal 0.2 || coast

ability problems, since complex event expressions have to
be transformed into disjunctive normal form. Therefore, iim the probabilistic relation “dfTermSpace”, the probékil
most applications, we apply extensional semantics. For thiea term can be interpreted as the probability that the term
scope of the algebra variant we discuss here, we work wihcurs in a document of the collection. This is a value-based
extensional semantics, i.e. each algebra expressiortlgireprobability (see definition 4), where here value-basedezorr
aggregates probabilities. sponds to document-based. This demonstrates that the tra-
We give next the definition of the probabilistic projectiofitional IR notion ofdocument frequency (dfjanslates to

where the assumption is a parameter of the operator. e More general notion sfalue frequency (vin the rela-
tional framework, where any set of attributes can be defined

Definition 6 Projection: to form thevalue keyon which the value frequency is based.

o i The generalised notion of value-based versus document-
Letr = 7'[i1..in] be atuple composed of the attribute valugsased, and the value-based versus tuple-based probabili-
at columns (positions)...iy, in tupler’. ties play an important role when modelling retrieval models
Let T,(i1..in) be the set of tuples of relatiom™ that share (section 7).

the same attribute values at columinsi,. For the binary operators product, union, and subtractien, w
(T, P) = ‘Project’ assumption[praTargetListl( only give in the following the definitions.

T = {r|r = '[iin] AT € To} Definition 7 Product;
D oreT(ir..in) Pa(7) if assumption="disjoint’

(T, P) = 'Multiply’ assumptiong,b)
1- HTGTa(il..in)(l - Pa(T))

P(t) = if assumption="‘independent’ T:={rlra €T AT, ETy AT = [T, T}
max({Po(7)|7 € Ta(ir..in)} 0 if assumption="disjoint’
if assumption='subsumed’ Pu(7a) - Py(13)
P(r) := if assumption="independent’
If no praTargetList is specified, i.e. Project assumptidn( min({P,(74), Po(1)})
then this is equivalent to the praTargetList that contalhs a if assumption=‘subsumed’

attributes of the argument relation™

¢ end of definition ¢ end of definition
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Definition 8 Union: — Qre&ewld Coll
(T, P) = ‘Unite’ assumptiong,b) a9 [ al Term | Docld
voat> | o | o
T:={rlreT, V1 eTy} Eilgtnsg gg sailing | d2
P, (1) + Py(7) if assumption="disjoint’ east | g2 Eﬁ!{{;g 35
Po(7) + Py(1) — Pu(7) - Py(7) coast | g2
P(1) := if assumption=‘independent’

max({P, (1), Ppy(7)})

if assumption="subsumed’ From this, we obtain a probabilistic representation of gser

and documents (the next section explains how the probabil-
ities would be generated). For example:
¢ end of definition

probQuery
Prob [| Term [ Queryld probColl
Definition 9 Subtraction: 0.5 || sailing | g1 Prob [[ Term | Docld
. ) . 0.8 || boats | g1 0.5 [[ sailing | docl
(T, P) = 'Subtract’ assumptiom(b) 05 [ saling | 2 05 || boats | dool
0.8 || boats | g2 0.66 || sailing | doc2
,_ 1.0 || east q2 0.33 || boats | doc2
T=A{rlr e T‘_l} ) o 1.0 || coast | g2
P,(7) if assumption="disjoint’
Pa(r) - (1= PBy(1)) . _ _
P(r) := if assumption="independent’ In “probQuery”, the probabilities might reflect the dis-
max(Py (1) — Py(7),0) criminativeness of a term: sailing is frequent, boats is
if assumption="'subsumed’ less frequent, and east and coast are rare. Probabilities in
“probColl” are based on the within-document term occur-
rence.

¢ end of definition ) L . .
Given these probabilistic representations of queries aad d

uments (collection), we can now formulate a retrieval strat
The definitions of product and subtraction raise an interesyy (ranking function) as follows:
ing theoretical (and philosophical) issue since tupleswit

probability zero or even negative probabilities may be pre- PSQ ]
duced. CREATE VIEWTretrieve AS
SELECT DI SJO NT Queryld, Docld
For example, in a subsumed subtraction, giveyir) < FROM probQuery, probColl
Py(7), we might obtainP(7) < 0 in the result if we sim- WHERE probQuery. Term = probCol | . Term
ply subtract probabilities. The illustration of the assump ) ]
tion “subsumed” in figure 10 shows that the interpretatiohh€ translation of the PSQL statement to PRA yields:
of a subtraction as the Boolean combination “AND NOT”
leads toP(7) = 0 if Pu(r) < Py(r). Therefore, we de- ¥ .\ sve =
fine a subsumed subtraction to have the positive probabilitypr oj ect di sj oi nt [ $2, $4] (
P(7) := max(P,(r) — Py(7),0). Thus, we have no opera- Sel ect [ $1=$1] (
tion or aggregation that generates negative probabilities Mul ti ply(probQuery, probColl)))

Regarding zero probabilities, the aggregation is well @fin\y naye defined the five basic operators, including PSQL

for g” o?eratlpﬂs. AB 'B.tll.“t've opt||£|n|sat|on |]9ea IS 10 ?'sand PRA examples. In the next section, we define the main
card tuples with probability zero. However, from an in OrE:omposed operators, namely join and division.
mation point of view, the information that a tuple is in a

relation with probability zero is different from the infoam
tion that a tuple is not in a relation. This will become even

more evident when we apply the relational Bayes for ge6:2 Composed Operators
erating informativeness-based probabilities, where @& zer

probability tuple tells us that an attribute value (for exden
“sailing” is an attribute value) is not informative, i.e athit
occurs in all elements of the event space (tuples or valu
where, for example, documents are values).

To conclude this section with an example involving severdl. The composed operators of classical relational algebra
algebra expressions, we return to our running example on apply in the probabilistic case as well.
document retrieval. 2. The division operator does not divide probabilities.

There are a number of composed operators that are equiv-
alent to an expression involving the basic operators. Ia thi
Baper, we emphasise the following points:
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An important composed operator is the join, basically ldere, docl is estimated to be the most relevant, and doc2
product allowing for the specification of a condition: and doc3 are estimated to be equally relevant documents.

Join assunption[joinCondition] (ab) := Alternatively, using an independent projection, the aggre
Sel ect [ sel ect Condi ti on] ( tion of probabilities has the effect that doc2 is viewed less
Miltiply assunption (a,b)) likely to be relevant than doc3, as shown below:

The definition shows, that the conditional join is viewed to
be equivalent to a selection on the product of two relations. result = Project independent[$3](resultBody
The conditional join is important since it is more elegant prob ]| Docld
to use, and more efficient to compute than its decomposed .og ggg%
equivalent. For example, consider the join of “Query” and 50 = 0.5 || doc3
“Coll” over the attribute “Term”:

Joi n[ $1=$1] (Query, Coll) := This example illustrates the effect that probabilistiaasy-
Sel ect [ $1=$3] (Mul ti pl y(Query, Coll)) tions may have on the ranking.

The example illustrates that the column specification [Next, consider the division. We follow the definition to be

the join condition and select condition are different. IfPund in [ENOO] page 224, and [SKS02] page 102, and other

the join condition, the column specification is such th&omprehensive database books. ietndb be PRAEs. Let

the columns refer to the first and second argument &fU Y be the attributes of and letX be the attributes of.

the join, respectively, whereas in the select conditioe, th. o

columns refer to the concatenated tuple being the t%—‘éhgfﬁg’ctbz =

sult of Multiply(Query,Coll). When pushing a select con- ~ p oj ect[ Y] (

dition to a join operation, the column specification is  Project[Y](
ct (
ipl

~

a),

adapted accordingly. We define the PRA here with column Subtra

numbers, however, we may also use expressions such as Mil tiply(b, Project[VY](a)), a)))

Join[$Term=$Term](Query,Coll), given that the schema (th L. . .
attrit[)ite nam$es) of]“(guer;/" and)“?:oll" are defined. ( We show the division here to underline that the division is

i , ) i a composed operator, composed of the basic operators, and
T_o continue the_ illustration Qf the_semantlcs of _PRAE_, CORne basic operators perform probability aggregation (mult
sider the following example in which we work with a simpléjication, summation, min/max) of probabilities, but da no
relation “probQuery(Term)” that contains no Queryld, buljyide probabilities (or frequencies) as this is required f
just terms. Further, we model a relation “probColl” with &opapilityestimation We underline this point to fully clar-
more diverse distribution of probabilities than used in-préxy why the division is not capable of performing the divisio

vious examples. In “probColl”, we insert horizontal linegyt hrobabilities (frequencies) as it is required for proligb
to make it easier to associate tuples that belong to the saga@mation.

document. . _
Next, we move to a new, sixth operator of a probabilistic re-
probColl lational algebra, the relational Bayes. As the name indiat
Prob [ Term [ Docld . ,
probQuery the operator is related to Bayes’ Theorem.
Prob [[ Term 0.8 [[ sailing | docl
55 T 0.6 || boats | docl
) saling 0.6 || sailing | doc2
05 || boats 0.4 || boats | doc2 - . .
1.0 | safling | doc3 6 PSQL and PRA: Probability Estimation: The

Relational Bayes
Joining “probQuery” with “probColl” yields:

resultBody = Join[$1=%1](probQuery, probColl) As highlighted throughout the paper, basic probabilistic r
Prob [[_probQuery.Term] probColl.Term[ Docld | |ational algebra provides probabiligggregationbut lacks
0.4=10.5-038 [[ sailing sailing docl the means to describe probabilggtimation Therefore, we
8’3 = 8'? : 8’2 ggﬁ‘ltns ggﬁ‘ltr? ggg% introduce in this section the relational Bayes, the sixtérop
02=05.04 boatsg boatsg doc2 ator of probabilistic relational algebra.
0.5=0.5-1.0 ]| sailing sailing doc3 We present the relational Bayes in three steps, where

A projection on the third column yields a relation with reth® three steps are motivated by the type of estimation

trieved documents. Applying a disjoint projection, we opProbabilistic assumption). Section 6.1 introduces the re
tain: lational Bayes for the classical assumptions “disjoint”,

“independent”, and “subsumed”. Then, section 6.2 adds the
resuit = Prolgeci)d'slgm[ff](resu'tBOdy logarithmic assumptions, namely “méog” and “sumlog”.

0T 503 I dgccl The Iogarithmic_ assumptions support the estim'a'ti'on of what
03402 || doc2 we refer to as “informativeness-based” probabilities, gs o
0.5=0.5 || doc3 posed to the “occurrence-based” probabilities obtained vi

0.7 =
0.5 =
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the classical assumptions. Finally, section 6.3 introduse since no other even complex operation supports the division

sumptions such as “maidf’ and “sum.idf”. These assump- of probabilities.

tions correspond to complex relational Bayes expressions an example, consider the generation of a probabilis-

and simplify PRA programs. tic relation where the probabilities are of the nature
P(Term Docld|Docld). In a column-based notation, we also

write such a probability a®($1, $2|$2), i.e. the second at-
6.1 Classical Assumptions: Disjoint, Independent and  tribute forms the evidence key.

Subsumed We name the relation as “tfCollSpace” (which is short
for term frequency collection space). We generate

6.1.1 Syntax and Semantics of the Relational Bayes “tfCollSpace” from the non-probabilistic relation “Colls
follows:

With respect to our running example, we are looking for -

a way to describe probabilities such Bs,;(Term/Docld) ‘,i,cfg'ﬂp‘?‘r‘;fr; Bf‘ygﬁfﬁgl(@"

and Pp.s.» (Nationality). How can we describe such prob- 05 [ sailing | docl

abilities in PRA and PSQL, respectively? 05 || boats | docil

We propose a basic probabilistic relational operator dalle 8'23 :g:::ﬂg ggg%

Bayes. Basically, Bayes divides each tuple probabilite (th 0.33 || boats | doc2

probabilities in a non-probabilistic relation ated) by an 0.33 ][ sailing | doc3

aggregated tuple probability, which we refer toeasdence 0.33 || east doc3

probability. For example, the sum of all doc1 tuples can be 0.33 || coast | doc3

viewed as an evidence probability. 1'8 Ez",:l'tnsg gggg

The formal definition of the relational Bayes is:

For example, consider the computation of
Definition 10 Bayes: “0.33(sailing,doc2)”. The probability of this tuple is the re-
sult of dividing the probabilityPc,;; ((sailing,doc2) = 1.0
by the evidence “probability” for “(doc2)”, which i8.0
T = {r|r € T} since there are three tuples with doc2. The probabilistic

(T, P) = ‘Bayes’ assumptioni] . . .i,](a)

Py(r) semantics i€).33 = 313, where1/10 is the probability
P(r) = m that a tuple is drawn from relation “Coll”, ang// 10 is the

probability that a doc2 tuple is drawn from relation “Coll”.

The keyi; . ..i, is referred to as thevidence kegince NOt& that the relational Bayes operation preserves the non-
the relational Bayes generates a relation where the listinct tuples, e.g. the tuple0:33(sailing,doc2)” occurs
ple probabilities correspond to the conditional probapili Wice in the result of the Bayes operation.

P(7|7[iy ... in]). To aggregate the probabilities of non-distinct tuples, we a

The probabilistic relationd” is the so-callecevidence key ply a distinct projection, namely a disjoint projection st
projection: case. We obtain;

b = ‘Project’ assumptioni] . . . i,](a). tf= Project disjoint(Bayes[$2](Coll))

If no assumption is specified, i.e. given Bayes|...]J(.hgrnt Pg)lg I I::I:: | ngd
the assumption ‘disjoint’ is the default. 0.5 boatsg dool

< end of definition 0.66 || sailing | doc2
0.33 || boats | doc2

0.33 || sailing | doc3

The relational Bayes perfqrms a proj'e'c.tion on thge evidence 033 || east doc3
key. We refer to the resulting probabilities of the inner-pro 0.33 || coast | doc3
jection asevidence probabilitiesThe inner projection is also 1.0 || sailing | doc4
referred to as evidence projection. 1.0 || boats | docd

Given the result of the evidence projection, the relationgthe probabilities in the relation “tf” reflect the maximum-
Bayes computes the resulting probability (conditionabprojikelihood estimate of the form(t, d) /N (d). This linear es-
ability) as the division of the tuple probability and the eViimate is an important estimate with a clear interpretation
idence probability. The division of probabilities reminols 1o underline its general meaning, consider the estimation o

the division operator. However, as the definition of the rgrpropapilistic relation with?(NationalityCity) (where we
lational division shows, the relational division is baset 0,se attribute names in the PRA expressions).

the basic operators, and no division of probabilities is per
formed. Moreover, the relational Bayes is a basic operater,PRA
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person_nationality_city = val ueSpace =
Proj ect disjoint( Bayes[] (Project distinct[$Docld](Coll));
Bayes disjoint[$city](
Project[$nationality, $city] (Person))); distinctColl = Project distinct(Coll);

Despite the fact that the maximum-likelihood is intuitivedf Ter mSpace =
it is known for IR that the maximum-likelihood estimate P' gjoiegE $dD:)z’| ngthfng]r Zﬂdi(sti net Col |
actually proves — for text retrieval — to be inferior to a - val ueSpace))
Poisson-like (fractional) estimate where the probalitin
“tf” are computed via the fractional estimate of the forn\1N -
n(t,d)/(K +n(t, d)), wheren(t, d) is the number oft,d)- Ve obtain:
tuples, K is a constant to control the rise of the estimate,

e.g.K = 1. For the modelling of such a Poisson-based and dfTbermSpace
— from a text retrieval point of view —- effective retrieval Prob ] Te,r m
function, we either need special Bayes assumptions, or othe g /g E‘g'ggg
ways of aggregating probabilities. We will look into this re 1/5 || east
quirement in section 7 (modelling retrieval models). 1/5 || coast

We have described t-based probability’r, ¢, (t|d), and
this probability corresponds to what is in IR known as thé/e have introduced the syntax and semantics of the rela-
tf-component in &f -idf -like retrieval function. tional Bayes. In addition, we have applied the relational

Next we describe a tuple-based and a value-based term pfdBYes to create three probabilistic views:

ability Po,i(t), i.e. the probability that a termoccurs. We

refer with Pr c,;(t) to the tuple-based probability, and wel. View “tf(Term,Docld)” where the tuple proba-
refer with Py, couipocra) (t) to the value-based probability.  bility is a tuple-based probability of the nature
The subscript of the value-based probability indicatesthe  Pr. ¢, (TermDocld). This relational view explains
tribute that forms the event space. the generation of the previously mentioned relation

The tuple-based probability is essential for language mod- ~ProbColl”. This tf-based relation is crucial to the two
elling. The value-based term probability is the input to Main retrieval models, namelyf-idf and language

idf, since theidf of a term is defined a&f(t, Coll) := modelling. .
—10g Pooupocta)(t). 2. View “tfTermSpace(Term)”, where the tuple probability

is a tuple-based probabilityr, co;(¢). This relational
We name the tuple-frequency-based term space yjey s important for language modelling.

“tfTermSpace”, whereas we name the value-frequency: vjew “dfTermSpace(Term)”, where the tuple probability

based term space “dfTermSpace”. is a value-based probability. coufpocra (t). This rela-

The tuple-based relation “tfTermSpace” is defined as the dis tional view corresponds to the relation “dfTermSpace”

joint projection on the space of disjoint collection tuples introduced in section 5.1 when defining the basic opera-
tors. The value-based (document-based) term probabili-

tfTernBpace = ties are important foidf.

Project disjoint[$Terni(
Bayes disjoint[](Coll));
In the next section, we show the embedding of the relational

In the relation “tfTermSpace”, we obtain: Bayes into PSQL.
tfTermSpace
Prob [| Term
5/10 || sailing
3/10 || boats 6.1.2 Translation of PSQL to PRA with Bayes
1/10 || east
1/10 || coast

Consider now the definition and translation of PSQL expres-
The tuple-based probability is fairly straight-forwardhen sions that support probability estimation. In PSQL, we add
compared to the value-based probability. For the valuedaswo new clauses to the SELECT statement: Bw@ence
probability, we need to define a value space, and then jdiay clauseand theassumption clauseFigure 11 shows the
the distinct collection with the value space to project om thsyntax of extended PSQL (refer to figure 6 for the syntax
frequency key, so that the projection aggregates for eamhbasic PSQL). Terminal symbols of the syntax are set in
frequency key (term) the probabilities of the values (docsingle quotes.

ments) in which the frequency key (term) occurs. The following PRA expression shows the principle transla-
Consider the following PRA program for describing a valugion of a PSQL SELECT statement to PRA, which includes
based probability: evidence key or estimation assumption.
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ps‘],':SRe(')e,\% ;iazle;tsioEanECT' aggAssumption sqiTargetList  As we saw in section 6.17(t|c) can be expressed with the
"WHERE' sqlCondition relational Bayes. However, so far, we lack the means to ex-
[‘EVIDENCE KEY’ ‘( sqlEvidenceKey )’ | press a probability that is proportionalitiy .

['ASSUMPTION’ estAssumption ]

- Therefore, we introduce further assumptions. Sincedhe
sqlEvidenceKey ::= targetAttributeNameList . . . . .
targetAttributeNameList ::= NAME the logarithm, respectively, is related to information-the
NAME ', targetAttributeNameList ory, we refer to these logarithmic assumptions also as
estAssumption ::= assumption information-theoreti@assumptions.
Fig. 11 Extended PSQL Syntax We extend in the following the definitions of Projection and

Bayes regarding the assumptions nlag and sumlog.

Definition 11 Logarithmic Projection:

# PRA
‘Bayes’ estAssunption [ praEvidenceKey ] ( This definition extends definition 6 (Projection). Definiti6é
“Project’ aggAssunption [ praTargetlist ] ( covers only the classical assumptions ‘disjoint’, ‘indepe
‘Select’ [ praCondition ] (

CMItiply () ) ) ) dent’, and ‘subsumed’.
min({ P, (7)|7 € T(é1..in)})

The non-terminal symbols of the PSQL statement are trans- if assumption='maxog’

lated into the respective PRA expressions. The sqlTarggtLiP(7) = I Pu(7)
sqlCondition and sqlEvidenceKey contain attribute names, TET (i1 in) " OV ) ,

whereas the corresponding PRA symbols may contain at- if assumption="surriog

tribute names (if the PRA layer knows the schema) or

columns. < end of definition

The PSQL Select statement is translated as usual to a rela-

tional projection. If a PSQL statement contains an evidenkekaving defined the semantics of the logarithmic
key clause or an assumption clause, then the relationaBagiaformation-theoretic) assumptions for Project, we can
is applied to the result of the projection. If only an evidenadefine the logarithmic Bayes, which involves an evidence
key is specified, then the assumption “disjoint” is used. ffrojection with a logarithmic assumption.

only an estimation assumption is specified, then a Bayes

without evidence key is applied (“Bayes(...)"), which meanyefinition 12 Logarithmic Bayes:

that the evidence key contains all attributes of the retatio o e o

covers only the classical assumptions ‘disjoint’, ‘indepe

For modellingtf-idf, we lack the functionality to estimateyant and ‘subsumed..

the probabilities that are proportional to thi# of a term.
Therefore, we introduce in the next section two new assu
tions, maxlog and sumlog, which could be also referred to
as logSubsumed (madrg) and logindependent (suhag), P(r) = —log Py (7)

to highlight their relationship to the classical assumsio —log Py(7li1, ..., in])

if assumptione {‘'max.og’, ‘sum_log’}

%, Ty) = ‘Project’ assumptiofiy, . . . ,i,](a)

< end of definition
6.2 Logarithmic Assumptions: marg and surdog

For the logarithmic assumptions, the relational Bayes di-
In IR, a crucial concept is the so-called inverse documeyities the logarithm of the tuple probability by the logamith
frequencyidf(t, c) of a termt in a collectionc, whereidf —of the evidence probability, where the evidence probabilit
is defined as the logarithm of a frequency-based probalifi-the minimum or the product of the probabilities of the ev-
ity. Let P(t|c) be the probability that the termoccurs in idence tuples.
the documents of the collectian This probability is usu- Fqr maxlog, the maximum of logarithms is equal to the log-
ally based on the number of documents in whtodmcc_urs arithm of the minimum of probabilities:
(denoted asip(t, ¢)) and the number of documents in the

collection (denoted a& p(c)): max({—log P(11),. .., —log P(t)}) =

np(t,c) —logmin({P(71),..., P(1)})

Np(c) Hence, the evidence projection Project mag[]() yields
idf(t, c) := —log P(t|c) (6) the minimum of the probabilities of the coinciding tuples.

P(tle) ==
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For sumlog, the sum of logarithms is equal to the logarithr6.3 Inverse Frequency Assumptions: mak(max_idf) and

of the product of probabilities: maxitf (max_ilf)
Z —log P(7;) = —log H P(1;) Reconsider the computation steps for describing the estima
i i tion of anidf-based probability, where we work now with

_ o _ _ general relations (not specific to document retrieval). We
Hence, the evidence projection Project sloy[]() yields generate an inverse-value-basied-pased) key space. For
the product of the probabilities of the coinciding tuples.  this, we apply the general notions of value key and frequency

For the Projection, majog corresponds to a conjunction ofkey: The value key (for text retrievajDocld} is the value
subsumed events, and stlay corresponds to a conjunctionkey), and the frequency key (for text retrievfiTerm is the

of independent events. This is summarised in the followiggauency key), are used for defining the value frequency.
table. Let r be a relation. The steps for describing the value fre-

quency are:

Assumption| Evaluation in Projection
maxlog conjunction of subsumed events 1. Generate value space:

sumlog conjunction of independent events val ueSpace =
Bayes[] (Proj ect distinct[valueKey](r));

As an example, consider the computation ofiditbased 2. Generate distinct tuple space:

term space: tupl eSpace = Project distinct(r);

maxidfTermSpace = Bayes magg[[(dfTermSpace) 3. Generate value frequency:
Prob [| Term vi =
log(0.8)/1og(0.2) ~ 0.1386 || sailing Project disjoint[fregKey](
log(0.6)/log(0.2) ~ 0.3174 || boats Joi n[ val ueKey=val ueKey] (
log(0.2)/1og(0.2) = 1.0 || east tupl eSpace, val ueSpace));
log(0.2)/log(0.2) = 1.0 || coast

4. Generate inverse-value-frequency-based probabilitie

The logarithmic assumptions add an important angle to the max_i vf = Bayes max.l og[] (vf)
relational operators Projection and Bayes, since theyvallg

for the description of so-called informativeness prokiabil'© facilitate the specification and evaluation of value-
ties. based probabilities, we define now the muak rela-

) ) ) _.tional Bayes. The mawf Bayes requires a projection
Before we conclude this section, we look at the irregulesiti 5, the frequency key to be its argument. For example,
of the logarithmic assumptions, nameédg P(7) is zero for j, “Bayes maxivi[](Project[$Term](Coll))”, the “Term” at-
P(r) =1, and itis not defined foP(r) = 0. tribute of “Coll” is the frequency key.

For maxlog and surdog, the evidence probabilit’,(1) ~ The distinct collection is joined with the valueSpace to ob-
is equal tol.0 if all probabilities of the evidence tuples arggin the base for generating the valueFrequencies (the rela

1.0, i. e. there exists no tuple probability less thiab. This  {jon “vf” in the derivation above corresponds for the redati
means that all evidence is not informative, since only tsiplecq||” to the document frequency (df)).

(signals) which occur with a probability of less thaf bear
any surprise, and only surprise is considered to be infornBeyes max_i vf[] (Project[fregKey](r)) :=

tive. Bayes max.log [] (
) L . ) Proj ect disjoint [fregKey] (
The evidence probability is zero if there is one zero proba- Join [ val ueKey=val uekey | (
bility among the coinciding tuples in the evidence key pro- Er 0j ect[] dl( stinct (r ),
ayes

jection. For this case, we can assign zero to the resultguple
sincelimp(,y_.g — log P(7) = oo.

The value-based dfTermSpace (end of section 6.1) S#ce the general concept of ami-based probability has its
a complex algebra expression. Thus, applying Bayesgin in the IR concept ofdf-based probabilities, we let
maxlog[](dfTermSpace) is clearly not the easiest expregiaxidf be a synonym of maxvf.

sion to evaluate. Therefore, the next §ection introduces Copg an example, consider thef (inverse value (document)
posed Bayes assumptions named rivéxalso referred to frequency) of attribute “Term” in relation “Coll”;

as maxidf) and maxitf (also referred to as maiff). These

yield two advantages: On one hand, the algebraic expresdiages max.i df [] (Project[$Ternj (Coll)) :=

becomes more compact, which is welcome when modellingBayes max.l og[] (

in PRA. On the other hand, the composed expressions allow ™" glofﬁt[ $g'o§1| g'zgltl[)frg]r?j (

for an index usage that leads to a more efficient processing Proj ect distinct(Coll),

that the computation of the decomposed expressions. Bayes[] (Proj ect distinct[$Docld](Coll))))

Proj ect distinct[valueKey] (r)))))
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Here,{Term} is the frequency key, anfDocld} is the value -- Extensional relations:
key. -- Coll(Term Docld);

) . -- tf_poissona(Term Context);
Next, consider the generation of tuple-frequency-based in Query(Term Queryld);
formativeness probabilities via the composed Bayes._itfax

operation: - within-docunment term frequency:

CREATE VI EW tf Col | Space AS
SELECT Term Docld
FROM Caol |
ASSUMPTI ON DI SJA NT
EVI DENCE KEY (Docl d);

L L CREATE VIEWtf AS
The definition is simpler than that of mawf, since the tuple SELECT DI SJONT Term Docld

space generated by Bayes[](r) is direct input to the disjoin  FROM t f Col | Space;
projection over the frequency key. . i ) ,
-- Optional: Bind tf to extensional relation.

This section added the relational Bayes to the basic PRAREATE VIEW tf AS

Now, the PRA components are the five basic operators, the SELECT Term Context AS Docld
composed operators, the relational Bayes primitives (dis- FROM tf_poi ssona;

joint, independent, subsumed, mhug', suml'og), and_ the __ ;i verse docunent fr equency:
composed relational Bayes expressions (wxmax.itf). creaTE Vi EWidf AS

We have now a probabilistic relational paradigm suitable to SELECT Term

describe the probability aggregatiandestimation required FROM Col |

: ASSUMPTI ON MAX_| DF
for modelling IR models. EVI DENCE KEY ()

Bayes max_itf[](Project[fregKey](r)) :=
Bayes max._l og[] (
Proj ect disjoint[fregKey](Bayes[](r)))

-- query termweighting and nornalisation:

e : : ; CREATE VI EW wQuery AS
KAPdro?ablllstlc Relational Modelling of Retrieval SELECT Term Queryld
odels FROM Query, idf

VWHERE Query. Term = idf. Term

- PP : ; . CREATE VI EW norm wQuery AS
We start with probabilistic variants of a simple but effgeti SELECT Term Queryl d

retrieval model, known as tf-idf (section 7.1). Then, wevgho FROM wQuer y
the modelling of the two major probabilistic retrieval mod-  EVI DENCE KEY (Queryld);
els: binary independent retrieval model (section 7.2) anel | .
guage modelling (section 7.3). In addition to the modelling r$tEr Sy g?g“?f”it S retrieve AS
of retrieval models, we include the modelling of the most ™ sg| EcT b sJ0 NT Docld, Queryld
common evaluation measure: precision/recall (section 7.4 FROM nor m wQuery, tf

VWHERE nor m wQuery. Term = tf. Term

-- Probabilistic interpretation:
7.1 TF-IDF -- For tf_poissona interpreted as P(d|t):
-- P(t]g) P(g) =P(qlt) P(t is informative | c )
_ . . -- RSV(d,q) = P(q) sumt P(d|t) P(t]|q)
The standard definition of thé-idf-based retrieval status

value RSV is of the formRS\d, q) = >, 40, tf(t,d) - CREATE VIEWretrieve AS

idf(t). When investigating the implementationtfidf in a ‘;’FEQLO'\EACL gof][ di' d?‘f;g’: ideve,

probabilistic relational framework, we came across défer - - - ’

variants we will report in this section. For implementing thThe PSQL script contains views for defining the probabilis-
standard form, we need to instantiate probabilistic refeti tic relations “tf” and “idf”. For “tf", the first two views

to modeltf andidf. Since we move in a probabilistic frame-demonstrate how to define a maximume-likelihood estimate,
work, we need to think about a probabilistic interpretattbn which is of the formP(¢|d) = n(t,d)/N(d). This linear
tf-idf, or, at least, define probabilities that are proportionaktimate is outperformed by a non-linear estimate of the
to tf andidf, respectively. This is fairly straight-forward forform n(t,d)/(n(t,d) + K), wheren(t,d) is the number
thetf component, but for thilf component, we need a log-of times term¢ occurs in document, and K is a term-
based normalisation and the probabilistic interpretatbn independent value, which might reflect, for example, the
the value obtained is not obvious (see [Roe03] for a discutscument length (BM25, [RWHB95]). This non-linear es-
sion of the semantics of such a probability). timate can be viewed as a Poisson approximation, and the
We illustrate in the following severi-idf implementations. term-document pairs with the respective probabilities are

] ) ) ] ] stored in relation “tfpoissona”. We report at the end of this
Consider first the PSQL script for modelling standdiritif - gaction the effect of different “tf” variants.

based retrieval. - _ .
The query terms are joined with “idf’ to generate the relatio

-- PSQ.: standard tf-idf retrieval “wQuery” of weighted query terms. The normalised query
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terms are required for obtaining a probabilistic interpretextend the framework we present here in this paper. The ex-
tion of the sum over théf -idf products. Finally, we define tension is based on providing more assumptions for the re-
the view “stdtf_idf_retrieve”, which contains the documentiational Bayes, and also on providing special assumption fo
query pairs with their probabilistif-idf retrieval status val- the Join. Since these extensions significantly enhance and
ues. enlarge the framework, we focus in this paper on the mini-

The translation of the PSQL script yields a PRA programal PRA and its relational Bayes, and we address the exten-
that is equivalent to the PRA program shown next. sions in future work.
When implementingf-idf, we encountered less complex

# PRA tf-idf retrieval PSQL programs that providetgidf-like RSV Consider in
# Extensional relations: ; . .
# Col I (Term Docld); the following an alternative and fairly compact PSQL pro-
# Query(Term Queryld); gram, where we joindf-weighted query terms with the re-
ol S T Doc d) lation “Coll” rather than “tf". In “Coll”, we have non-distict

t pace( lerm C : - in “tf” icti i
£fCol | Space = Bayes[$2] (Coil): Term Doc_Id _tuples, whereas in “tf”, tuples are distinctcgin
# tf(Term Docld): the non-distinct Term-Docld tuples have been aggregated
tf = Project disjoint[$1,$2](tfColl Space); into the probabilities of the tuples in “tf".
# Optional: Bind tf to extensional relation. -- PSQL: alternative tf-idf-like retrieval
tf = tf_poi ssona; -- This tf-idf variant does not rely on the

- -- generation of an explicit tf relation.
# idf (Tern): . .
idf = Bayes max_idf[](Project[$1](Coll)); CREATE VIEW alt1_tf _idf retrieve AS
SELECT | NDEPENDENT Docld, Queryld

# ery(Ter eryld): FROM wQuery, Col |
mg‘ﬁ’y Z( m Queryld) WHERE wQuery. Term = Col | . Term

Proj ect [ $1, $2] (Joi n[ $1=$1 , idf));
ol ect J(ernl I(Query, 1dD)) The translation to PRA yields:
# Nornal i sati on:

normwauery ° #I tP?Atf i df tri
Pr oj t $17$2 B $2 ; a _tr_i _retrieve =
roj ect[ 1(Bayes[ $2] (wQuery)) Proj ect independent[$4, $2] (
# Retrieve docunents: Joi n[ $1=$1] (wQuery, Coll));
# std_tf_idf _retrieve(Docld, Queryld): . . .
std_tf_idf _retrieve = The independence assumption leads to an aggregation of
Proj ect disjoint[$4,$2] ( the query term probabilities such that we obtain for the
Joi n[ $1=8$1] (norm wQuery, tf)); probabilities in “altltf_idf_retrieve” RS\(d,q) = 1 —
retrieve = std _tf _idf retrieve; H(t,d)eColl(l — P(q|t)). Note that the aggregation of non-

distinct(t, d) tuples in the relation “Coll” reflects the within-
Each PRA equation corresponds to a view in the PSQ@ocument term frequency. The light-weight nature of this
script. PSQL views that involve evidence key or assumptiamplementation motivated us to investigate the retrieval
lead to PRA expressions in which the relational Bayes peyuality of this script against-idf -implementations that con-
forms the required probability estimation. This is the cagain an explicit relation “tf”.
for the view “tfCollSpace” (see section 6.1 for an exampl

of the relation “tfCollSpace”) and for the view “idf” (Seeing script in which we join the non-normalised rather than

section 6.3 for the definition of the assumption mdf. the normalised query term weights, and view the query terms

We have modelled standatfdidf. The maximum-likelihood as independent rather than disjoint.

estimate is a conceptual part of the minimal probabilistic r

lational framework we presented so far. It is one of the main PSQL: ; ; :
- : . ._-- Aggregation of independent, non-nornalised

contributions of the relational Bayes that such estimation. query term wei ghts.

are now part of the probabilistic relational paradigm, aad d

not need anymore to be computedtsideof the relational CREATE VIEWalt2 tf _idf retrieve AS

algebra. However, for Poisson-like estimates, we stilbbin EFEQLO'\EAC\IQ'JEPEPE{\‘](DENT Docld, Queryld

“tf” to the extensional relation “toissona” in which prob- VHERE \,\Q,e)rlg,, Term = tf.Term

abilities were generated offline. There are numerous ways

in the PSQL/PRA framework to specify Poisson-like protNote the difference between “altPidf_retrieve” and

abilities, however, our aim is to integrate probabilityiest“std_tf_idf_retrieve”: In “alt2tf_idf_retrieve”, we (have to)

mations neatly into the conceptual framework of probabiligpply an independence assumption. Thus, a document that

tic relational modelling, rather than inventing new assumpontains one very rare term with a high term frequency will

tions and SQL syntax extensions for each way the prold@e ranked very high, regardless of the other query terms.

bilities can be estimated. The specification and semantlos‘std_tf_idf_retrieve”, we (had to) normalise the weighted

of Poisson-based and other probabilities actually requoe query terms for the safe application of a disjoint projettio

€or another candidate with explicit “tf”, consider the fml-

alternative tf-idf-like retrieval
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To investigate the performance of differefitidf notions The BIRM defines thé&SVas follows:

that emerged when modellinéridf in PSQL/PRA, we ran _
thetf-idf variants on a 500 MB structured collection INEXRS\, iy (d,q) = 3 {lo Pp(lg,r) _ log Po(tlg, 7;)
collection, [INE]) with 12,000 articles and 15 million re- Pp(tlg,r) Pp(tlq,T)
trievable contexts (sections, paragraphs, etc). Thissléad

32.5 million tuples in a representation similar to the rielat Here, the variations of thé, (t|q, ) probabilities are the
“Coll” in our running example. document-frequency-based probabilities that tératcurs
For thetf-idf variants, we obtain the retrieval quality prej” the respective set of relevant and non-relevant docwsnent

sented in figure 12, where the variants are sorted by perf§gSUming the collection to approximate the set of non-

tedng

mance. relevant (i.e.c = 7), and applying thadf-definition, the
BIRM can be rewritten as a linear combinationdff-values
([dVRO5])):
tf-idf | tf wQuery avg-prec| prec@10
std1 Poissortf normalised 0.2713 0.4138 RS\krri(d, q) =
std2 | Likelihoodtf | normalised 0.2077 0.4103 . . . .
altl | implicit tf non-normalised| 0.2038 |  0.4091 = Z lidf(t, c) — idf(t, r) +idf(Z, r) — idf(Z, )]
alt2 Likelihoodtf | non-normalised| 0.1224 0.2586 tedng
Fig. 12 Retrieval quality fortf-idf alternatives The probabilistic relational implementation is based oa th

linear combination ofdf-values. Based on whether or not
the negative term events are taken into account, and based
. i ) ) ) ) on the choice of the set of non-relevant documents, there
The experiment confirmg-idf with Poisson-liketf to per-  are four variants of the BIRM. We present the implementa-
form best. The standard variants (std1 and std2) work Wi§gn of the variantidf(t, ¢) — idf(t, ) where we combine the
normalisedidf-based probabilities for query term Welghtpositive term events in the collection and the set of relevan
ing, whereas the alternative variants (altl and alt2) wo cuments, and we disregard the negative term events.
with non-normalised query term weights. The variant with . . , .
implicit tf, where the join of query terms with the rela!n theé PSQL implementation, we define accordingly the
tion “Coll” followed by an independent projection impligit Views “idf-c” and “idf.r". The PSQL script is as follows:
captures théf part, performs quite well, taking into account . pgy . pirmretrieval
that this implementation actually frees the system from pro- Ext ensi onal rel ations:

viding a view “tf” or even a materialised relation. -- Coll (Term Docld);

. . . .- ery(Ter eryld);
Actually, it is in this paper not our aim to discuss retrieval. ?& ez(am ( &erQle d}/ D)OC| d);

quality. We know that depending on the application and data, _
we need to adjust retrieval strategies. What we do not know col I ection of relevant documents:
yet, but what we can investigate now given the expressive® TE VIEWrel Col | AS
. . . L SELECT Col|.Term Coll.Docld
ness of PSQL, is for example which retrieval function is best  Fravi r el evant, Col |
to retrieve the ‘Chinese or English people that we should re- WHERE rel evant. Docl d = Col | . Docl d;
cruitto open a business branch in China’. The point of PSQL a ot
i 1 7 H H s | In collectlon:
is that we can Qeflne and refine ranking for any query, inpat=c, -\ oo o ¢ AS
ticular for queries that involve complex relational schema SELECT Term

and not just a relation of terms and document ids, as it iS FRoM Col |

mostly the case in document retrieval applications. ASSUVPTI ON MAX_| DF
. _ . . EVI DENCE KEY ();

What thetf -idf -variation demonstrates is that PSQL is flex-

ible regarding probability estimation and aggregatiomgs -- idf in rel evant:

plicable to large-scale data, and allows to formulate and {fREATE VI EWidf _r AS

vestigate retrieval models in an abstract, relatively cactp EFEQLO'\EACrTeITam

but still efficient representation. ASSUMPTI ON MAX | DF
EVI DENCE KEY ();

-- query term weighting:
CREATE VI EW wQuery_c AS

7.2 Binary Independent Retrieval Model (BIRM) Egbac&lf;m i %‘egy' d

VWHERE Query. Term = idf_c. Term
The binary independent retrieval model (BIRM, [RSJ76]) iISREATE VI EW wQuery_r AS
a theoretical pillar of probabilistic retrieval. We inviggtte ‘;’FEQLO'\EAC&JZE;"‘ i %’e:y' d
in this section the probabilistic relational modelling bkt WHERE Query. Term = i df r.Term
BIRM. CREATE VI EW norm wQuery_c AS
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SELECT Term Queryld # Nornmal i sation:
FROM wQuery_c normwQuery_c = Bayes[](wQuery_c);
ASSUMPTI ON DI SIO NT normwQuery_r = Bayes[](wQuery_r);
EVI DENCE KEY (Queryld);
CREATE VI EW nor m wQuery_r AS # Conbi nati on of query term wei ghts:
SELECT Term Queryld wQuery =
FROM wQuery_r Subtract subsuned(norm wQuery_c,
ASSUMPTI ON DI SIO NT normwQuery_r);
EVI DENCE KEY (Queryld); normwQery = Bayes[](wQery);
-- conbi nation of normalised weights: distinctColl = Project distinct[$1,$2](Coll);

CREATE VI EW wQuery AS
normwQuery_c M NUS SUBSUMED normwQuery_ r; # Retrieve docunents:

CREATE VI EW nor m wQuery AS birmretrieve =
SELECT Term Queryld Proj ect disjoint[$4, $2](
FROM wQuery Joi n[ $1=%$1] (norm wQuery, distinctColl));
ASSUMPTI ON DI SJO NT
EVI DENCE KEY (Queryld); retrieve = birmretrieve;

CREATE VI EW di stinctCol| AS

SELECT DI STINCT Term  Docl d There are two equations for thdf-based probabilities of

FROM Col | terms: “idf.c” for the collection, and “idfr” for the set
of relevant documents. The subsumed subtraction performs
-- retrieve documents: the linear combinatioidf(¢, ¢) — idf(¢, r) for the respective
CREA;EL\E/'CTEWDF'SSQ—;\? Love AgJeryl d query terms. The disjoint projection sums per document-
FROM nor m wQuery, di sti nct Col | query pair over the query term probabilities.

WHERE norm wQuery. Term = di stinctCol|.Term  There are a number of issues regarding the implementation
. of BIRM. One issue is that the implementation shows the
CREA-IS—ELEETEWDE(;} {jl egeﬁa d parallel betweelf -idf and BIRM. Thetf-idf script contains
FROM birmretrieve; only the view “idf”, whereas the BIRM script contains the
] . views “idf_c” and “idf_r", and this clearly shows how the
The view “relColl” contains the Term-Docld tuples of theg|RM proposes to consider relevance information for query
relevant documents. Then, the views “itifand “idf.r" are  term weighting. Another issue is the semantics of the imple-
defined over “Coll” and “relColl", respectively. This is fol mentation. If a term is frequent in the collection, then i ha
lowed by query term weighting and the subsumed subtragnall probability in idfc. If the same term is rare in the rel-
tion of query term weights. Finally, the join of query termevant documents, then it has a relatively large probabiiity
weights and the distinct collection representation yi¢h#s df_r, This is certainly a poor term for selecting relevant doc-
retrieval result. Note that we join with a distinct view o&th yments. According to the discussion for a subtraction over

collection to reflect the nature of the BIRM. subsumed events in section 5.1, such a term will have a prob-
The translation to PRA yields a PRA program equivalent &pility of zero, and thus it will not affect the ranking. Ineth
the PRA program shown next: genuine formulation of the BIRM, poor terms have a neg-
_ _ ative impact on th&kSV To achieve a “correct” implemen-
ﬁ Efo\: birm IVEt f: e;’,a' . tation of the BIRM, we would need negative probabilities,
% ool le?%ma Do g) L ons: which we have excluded for now. Also, the mi-based
# Query(Term Quer yi d); normalisations consider the cardinality of the collectowl
# rel evant (Queryld, Docld); the set of relevant documents, whereas the genuine formu-
, . lation does not consider the cardinality. The relationsifip

z Col'l ection of rel evant documents: the genuine BIRM and its probabilistic relational implemen

rel Coll (Term Docld): N .
rel Col | = tation is a topic of future research.

Proj ect [ $3, $4] ( We have achieved a PSQL/PRA implementation of the

Joi n[$2=$2] (rel evant, Col1)); BIRM, and we continue in the next section with the other

# idf in collection: main probabilistic approach to IR, namely language mod-
idf _c = Bayes max_idf[](Project[$1] (Coll)); elling.
# 1df in relevant docunents:
idf _r = Bayes max_idf[](Project[$1](relColl));
# Query term weighting: 7.3 Language Modelling (LM)
wQuery_c = _ )
V\QJerP;OJr ect[$1, $2] (Join[$1=$1] (Query, 1df_c)); | anguage modelling linearly combines the probability

Proj ect [ $1, $2] (Joi n[ $1=$1] (Query, idf r)): Pr(t|c) (probability that termt occurs in collectiong) and
the probability Pr(t|d) (probability that term¢ occurs in



Modelling Retrieval Models in a Probabilistic Relationdb@bra with a new Operator: The Relational Bayes 21

documentd). These probabilities are estimated in the tuple FROM | anbda2, p_t_c, retrieved;

space, which is indicated by tHésubscript. Th&RSVis de-

fined as follows:

RSViar(d,q) = ) log (A~ Pr(t|d) + (1 = A) - Pr(t]e)

teq

The mixture parameteh is to be set: It can be term-
dependent, query-dependent, or background-dependent.

The following PSQL script is an implementation of LM:

-- PSQ.: Imretrieval

-- Extensional relations:
-- Coll(Term Docld);

-- Query(Term Queryld);
-- tf_sum(Term Context);
-- mxture(Nane);

-- mxture:

DELETE FROM m xt ure;

I NSERT | NTO mi xture VALUES
0.8 ("p_t_d), 0.2 ("p_t_c’);

CREATE VI EW | anbdal AS

SELECT FROM mi xture

VWHERE mi xture.Name = 'p_t_d’;
CREATE VI EW | anbda2 AS

SELECT FROM mi xture

VWHERE mi xture.Name = 'p_t_c’;

-- P(t|d):
-- Principle description via views:
CREATE VI EW t f Col | Space AS
SELECT Term Docld
FROM Col |
EVI DENCE KEY (Docl d);
CREATE VIEW p_t _d AS
SELECT DI SJO NT Term Docld
FROM t f Col | Space;

-- For efficiency,
-- bind p_t_d to extensional instance.
CREATE VIEW p_t _d AS
SELECT Term Context AS Docld
FROM t f _sum

-- P(t]c):

CREATE VI EW p_t _c_evi dence AS
SELECT Term
FROM Col |
EVI DENCE KEY ();

CREATE VIEW p_t _c AS
SELECT DI SJO NT Term
FROM p_t _c_evi dence;

-- retrieved(Docld, Queryld):
-- Needed for generating schena-conpatible
-- views docModel and col | Model .
CREATE VIEWTretrieved AS
SELECT DI STI NCT Docld, Queryld
FROM Query, Coll
VWHERE Query. Term = Col | . Term

CREATE VI EW docModel AS
SELECT Term Docld
FROM | anbdal, p_t_d;

CREATE VI EW col | Mbdel AS
SELECT Term Docld

-- conbi ne docunent and col |l ecti on nodel s
CREATE VIEWInl_p t__c_d AS

docModel UNION DI SJO NT col | Mbdel ;

-- retrieve docunents
CREATE VIEW I nl_retrieve AS
SELECT SUM LOG Docld, Queryld
FROM Query, Iml_p t_ c_d
VWHERE Query.Term = Iml_p_ t_c_d. Term

-- Probabilistic interpretation:
-- P(t|c,d) = lanbdal P(t|d) + lanbda2 P(t]c)
-- RSV(d,q) = prod_t P(q|t) P(t]c,d)

CREATE VIEWTretrieve AS
SELECT Docld, Queryld
FROM I mL_retrieve;

The PSQL script shows the probabilistic viewstd” and
“p-d_d”, where the probabilities correspond R (t|d) and
Pr(t|c), respectively. Similar to th#-idf script, we show
the principle generation dfr(t|d), which we then overwrite

by a view that takes advantage of a materialised relation
“tf _sum” that contains the pre-computed probabilities. This
is purely for reasons of efficiency, since the viewt:d” re-
quires an aggregation of probabilities, and this aggregati
can be pre-computed in a materialised relation. Then, oper-
ations on “pt_d” are more efficient.

Consider next a PRA program equivalent to the outcome of
the PSQL to PRA translation:

PRA: Imretrieval

Ext ensi onal rel ations:
Col | (Term Docld);
Query(Term Queryld);
tf_sum(Term Context);
m xt ur e( Nare) ;

H O OHHHFHHH

M xt ure:

_del ete(m xture);

0.8 m xture(p_t_d);

0.2 mxture(p_t_c);

| anbdal = Project[](Sel ect[$1=p_t_d](m xture));
| ambda2 Project[](Sel ect[$1=p_t_c](m xture));

# P(t|d): p_t_d(Term Docld):
tf Col | Space = Bayes[$2] (Coll);
p_t_d = Project disjoint[$1,$2](tfColl Space);

# Optional usage of pre-conputed tf:
p_t_d=tf_sum

# P(t|c): p_t_c(Term:
col | Space = Bayes[](Project[$1](Coll));
p_t_c = Project disjoint[$1](coll Space);

# Retrieved docunments for the generation of
# the collection nodel that can be united with
# the document nodel .
# retrieved(Docld):
retrieved =
Project distinct[$4](
Joi n[ $1=%$1] (Query, Coll));

# Docunment nodel :
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# docModel (Term Docld): we model IR. Secondly, by replacing black-box tools that
docMdel = Join[](lanbdal, p_t_d); produce precision/recall values, we enable the appliaatio
4 Coll ection model - specific modification of measures.

# ICIO:VLdNDIdel (Term Docld): For an illustration, consider the following data in relaiso
Cco e =

Join[](lanbda2, Join[](p_t_c, retrieved)); Retrieved” and “Relevant™

Ret d
# Conbi nation of docMddel and col | Model : Quereldnevgocld
Iml_p t_cd= T ] Toc2 Relevant
Uni te di sjoint (dochMdel, coll Mdel); 31 doca Queryld [ Docld
# Retrieve docunents: ql doc6 gl docl
Iml_retrieve = ql doc8 ql doc4
Project sum | og[ $4, $2] ( gi gggé gi ggg?l
Joi n[ $1=%1] (Query, Iml_p_t__c_d)); oL ocs o Gocla
; - ; . ql doc? ql doc19
retrieve = Iml_retrieve; oL o B doct
. . . q2 doch
The PSQL views correspond to their respective PRA equa- a2 doc4

tions. The view “collModel” involves an expensive join
of query term weights based of(t|c) with the re- Based on these extensional relations, we define three views
trieved documents. This join is required since the relatiorthat are later used for defining precision and recall.

union requires schema-compatible relations “docModel”

and “collModel”. , o

-- Extensional relations:
The implementation shown above is semantically correct but Retri eved(Queryld, Docld);
because of the required schema compatibility not efficient. Rel evant (Queryld, Docld);
We have started' to look into alternative ERA formula'tioraZREATE VI EWretri evedSpace AS
and we have defined an extended PRA with special mixture = sg ECT Queryld, Docld
joins that support a correct and efficient implementation of FROM Retri eved
LM. This is related to the description of Poisson-like esti- ~ASSUMPTI ON DI SJO NT
mates mentioned in the section 7.1tbxidf. We will report EVI DENCE KEY (Queryld);
on the PRA extensions regarding Poisson and probabilf¢eate vi Ew r el evant Space AS

mixtures in future work. SELECT Queryld, Docld

We have presented the PSQL/PRA implementation of lan- iggt\jll\/?}: g\gagt' SJO NT

guage modelling. With this, we have completed the imple-  Evi DENCE KEY (Queryld):

mentation of three main models, naméfyidf, BIRM, and )

LM. For tf-idf and LM, we showed semantically correcPREATE VIEW retri gved—a”g—’e' evant AS

implementations, whereas the BIRM implementation does ‘;’FE;(‘]'\EACTRe%S;ﬁ - Rgfrci' oved

not implement the genuine BIRM formulation. Proving the  \\4eRE Rel evant. Queryld = Retrieved. Queryl d

correctness of PSQL/PRA implementations is an important AND Rel evant. Docld = Retrieved. Docl d;

task; for the implementations shown here, the correctness

has been investigated but the formal proofs have been &ke view “retrievedSpace” contains for each query the

cluded from this paper. Also, the PSQL/PRA scriptstfor probabilistic tuples that reflect the probability that a doc

idf, BIRM and LM have been verified in a prototypical imuUment is among the retrieved documents of the query.

plementation. In the next section, we add the probabilistide view “relevantSpace” has the analogous role for the

relational modelling of precision/recall. relevant documents. Given these spaces and the view
“retrievedandrelevant”, we describe precision and recall:

-- PSQ@.: precision and recall

7.4 Precision/Recall CREATE VI EW preci si on AS

SELECT DI SJO NT query
Precision and recall are frequently used measures to comEROM retri eved_and_rel evant, retrievedSpace
. . . . VWHERE retrieved_and_rel evant. Queryld =
pare retrieval quality. Precision and recall can be intetgat retri evedSpace. Queryl d
as the conditional probabilitie®(relevanfretrieved and AND retrieved_and_rel evant. Docld =
P(retrievedrelevany, respectively. This interpretation im- retrievedSpace. Docl d;
plies that we can model precision and recall in a proba-
bilistic relational framework that supports the descdptof CRESIEC}/' E}NSS eocﬁlrl qﬁesry
conditional probabilities. This has two benefits: Firsthe FROM retrieved_and_rel evant, rel evant Space

measures become part of a conceptual framework in whichWHERE retri eved_and_rel evant. Queryld =
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rel evant Space. Queryl d precision recall

AND retrieved and_rel evant. Docld = Prob || Queryld Prob || Queryld
r el evant Space. Docl d; 3/9 ql 3/6 o
1/2 1| 92 11 g2

The translation of the first PSQL script with views
“retrievedSpace” and “relevantSpace” yields the follogvinwe have demonstrated how PSQL/PRA enables to express

PRA program: precision and recall. This result embeds both, retrieval-mo
els and quality measures, into the conceptual framework of
# PRA probabilistic relational modelling. The expressivenda®e

retri evedSpace = Bayes[$1] (Retrieved);

rel evant Space = Bayes[$1] (Rel evant ) : lational modelling allows to customise the measures. For

example, to capture the dependency of tuples (documents)
retrieved_and_rel evant = in relation “Retrieved”, we would join “Retrieved” with a
Project [ $1, $2] ( relation “Dependency(Docld1, Docld2)” to perform a post-
Joi n[ $1=$1, $2=$2] ( processing of the retrieval result, and to base a measure on
Rel evant, Retrieved)); . . .
the obtained alternative of retrieved documents.

The first two equations vyield the two space$he modelling of precision and recall completes the proba-
“retrievedSpace” and ‘“relevantSpace”, where ihilistic relational modelling of main IR concepts. In thexhe
each space a document occurs with the probabiligction, we evaluate PSQL/PRA against the modelling of IR
Pypace(d|q) = 1/N(q), whereN(q) is the number of docu- models and probability estimation in standard SQL.

ments for query;. The third equation yields the relation of

retrieved and relevant documents.

We obtain the following probabilistic relations: 8 Evaluation
retrievedSpace In this section we compare the following:

P;(/)g I C?lu ed| Egcczld relevantSpace — The modelling oftf-idf retrieval using traditional SQL
1/9 || q1 doc4 Prob [[ Queryld [ Docld vs. PSQL. The comparison highlights the abstraction and
1/9 || q1 doc6 176 || q1 docl expressiveness of each approach.

1/9 || q1 doc8 1/6 || q1 doc4 — The efficiency and scalability of modellint-idf re-
ﬂg g% ggg% i;g g% 38221 trieval using traditional SQL vs. PSQL. The compari-
19 || q1 docs 16 || q1 docl4 son focuses on investigating the performance of each ap-
1/9 || q1 doc7 16 || q1 doc19 proach for handling large-scale data.
1/9 || q1 doc9 1] g2 doc4 — The scalability of estimating probabilities using SQL
1/2 || g2 doc5 vs. PSQL. The investigation focuses on the performance
12 ]l 92 doc of generating probabilities in large-scale databases.
retrievedandrelevant We first investigate in section 8.1 the implementatioitfef
Prob [[ Queryld | Docld idf in both traditional SQL and PSQL. Then, we discuss
11 ql docl probability estimation in section 8.2.
1 gi gggg According to their different natures, we refer to the imple-
1| g2 doca mentation of modelling IR by traditional SQL as “IR on

DB”, and we refer to the PSQL approach as “DB+IR”. We
demonstrate our implementations and discuss our analysis

Next, consider the PRA equations for precision and recall; : :
in the following sections.

# PRA: precision and recall

precision = 8.1 TF-IDF-based Retrieval: SQL vs. PSQL
Project disjoint[$1](
Joi n[ $1=%1, $2=%2] (
retrieved_and_rel evant, retrievedSpace)); As we presented in section #idf-based retrieval can be
| = denoted using the probabiliti(t|d) that term¢ occurs in
rech?Oj ect disj o nt[$1]( document/, and the probability?(¢|c) that termt occurs in

Joi n[ $1=$1, $2=$2] ( a document of collection.

retrieved_and_rel evant, rel evant Space)); RSV(d, g) = Zp(ﬂd) - log P(t]c)
t

The joins of “retrievedandrelevant” with the respective
spaces, followed by disjoint projections, yield the pramis We take the “Coll” relation from the running example in sec-
and recall values: tion 3 to demonstrate our implementations.
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Coll CollStats DocSpace (DocumentSpace)
Attribute | Type Index Attribute | Type Index
Attribute Type [ Index
Term varchar | non-clustered NUMOfDocs T int none Docld varchar | clustered
Docld varchar | none Length int none
ATibUTe TTe;mFrecin dex TermSpace TermSpaceDF
Term vgfchar non-clustered Attribute Type Index Attribute | Type Index
Docld varchar | none Term varchar | clustered Term varchar | non-clustered
Ptd float none DocFreq (DF) | int none Ptc float
QTerms
Attribute | Type Index
Term varchar | non-clustered
Fig. 13 SQL database schema for SQL-based modelling of text ratriev
8.1.1 TF-IDF Using Traditional SQL case ofP(t|d) we compute the final probability because we

assume that there will be no partial update of the document.

Figure 8.1.1 shows the database schema applied for the the other hand, we delay_the computati_odPQf ¢) inor-
idf implementation with SQL. We start with the SQL viewder to be prepared for updating the collection incrementall

named “CollStats” containing collection-wide statistifter Consider next the creation of view “TermFreq”(Term, Doc-

example, the number of documents. ument, Pt_d):

CREATE VIEW Col | Stats AS CREATE VI EW Ternfreq AS

SELECT count (DI STINCT Docld) AS Nunf Docs SELECT Term Coll.Docld,

FROM Col | : count (Term / DocSpace. Length AS Pt d

FROM DocSpace, Col |
VWHERE Col | . Docld = DocSpace. Docl d

We obtain: GROUP BY Col | . Docld, Term
CollStats We obtain:
NumOfDocs
TermFreq
Term [ Docld [ P_td
We define “CollStats”, and also the relations to follow, as sailing | docl | 1/2
views, since the idea is that all these relations are based boats | docl | 1/2

sailing | doc2 2/3
boats | doc2 1/3
salling | doc3 1/3

on the persistent relation “Coll(Term, Docld)”, in which we
model the representation of the collection. In an ideal sce-

nario, updates on the possibly huge relation “Coll” update east doc3 1/3
automatically the views in which the statistics are main- coast | doc3 | 1/3
tained. sailing | doc4 1.0

boats | docb 1.0

Next, we create a table of documents (relation “DocSpace”)

CREATE VI EW DocSpace AS document term frequency. Next, we create the table

SELECT Docld, count(Term) AS Length “TermSpace” where we maintain for each term the number
FROM Col | of documents (the so-called document frequency) in which
GROUP BY Docl d; the term occurs.
We obtain: CREATE VI EW Ter nSpace AS
SELECT Term count (DI STINCT Docld) AS DF
FROM Col |
DocSpace
Docld | Length GROUP BY Term
docl 2 .
doc2 3 We obtain:
doc3 3
doc4 1 TermSpace
docs 1 Term [ DF (DocFreq)
sailing 4
Now, we are ready to compute the probabilitiég|d) and gggtts 3
P(t|c). However, we treat their modelling differently. In the coast 1
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The explicit “TermSpace” is not a common practice. lie obtain:
[GF04], a static model is proposed where idf is directly com-

uted. This is shown in the following SQL statement: TermFreq
p 9SQ P(7) ]| Term ] Docld
CREATE VI EWidf AS 1/2 ]| sailing | docl
SELECT Term 1/2 || boats | docl
-1 og(count (DI STI NCT Docld)/ 273 || sailing | doc2
Col I St at's. Num¥ Docs) 1/3 || boats | doc2

FROM Col | Stats, Col | 173

GROUP BY Term salling | doc3

1/3 || east doc3

. . . 1/3 || coast | doc3
The above view “idf” is problematic for update operations. 1.0 [ saing | doca

If we add a document to the collection, then the tuples in 1.0 [ boats | docs
the view need to be updated because CollStats.NumOfDocs

has changed. Therefore, we model in “TermSpace” thgxt, consider the creation of a term space in which the term
“DocFreq” as the total count and apply the logarithm anstobabilities refleciP(t|c), i.e. the probability that occurs
perform normalisation (with respect to the total number @f (a document of}..

documents) at retrieval time. Consequently, this incremen

tal nature is different from the static approach descrilmed $REATE VI EW di sti nct Ternms AS
[GF04]. SELECT DI STINCT Term Docld

FROM Col | ;

Now, we are ready to descrilié-idf-based retrieval. The

iliti TE VI EW Ter nSpaceDF AS
probabilities based on document frequency can be compu FLECT Term

from “TermSpace” as follows: FROM di st i nct Ter ms
CREATE VI EW Ter nSpaceDF AS EVI DENCE KEY ();
SELECT Term -
Ter mSpace. DF/ Col | St at s. Nunf Docs AS P_t ¢ We obtain:
FROM Ter nSpace, Col | Stats;
TermSpaceDF
We obtain: P(r) ][ Term
TermSpaceDF 4/5 || sailing
T =) 3/5 || boats
e.r m | Pte 1/5 || east
sailing | 4/5 1/5 || coast
boats | 3/5
232; %?g Next, we apply an advanced feature of PSQL, namely

so-called informativeness-based probability estimation

The delayed application of the logarithm keeps OJ}hroug_h_ t_his operation,.we obta_in a term space in which the
model tidy, since now we have in “TermFreq” and iprobabilities reflect the informativeness of terms.
“TermSpaceDF" probabilistic weights with a clear semansge e i ew Ter nSpacel DF AS

tics, namelyP(t|d) and P(t|c). SELECT Term

Finally, we describef-idf-based retrieval as the aggrega- ~ROM Ter nSpaceDr

i f terms with document frequencies and within- ASSUMDT] O MAX_LOG

tions of query _ q EVI DENCE KEY ();

document term frequencies.

SELECT sun{P.t d * -10g(P.t c)), Docld 'I"he'as“sumpnon mabog inverts the occurrence 'p_robablll-
FROM QTer ns, TernSpaceDF, Ter nfr eq ties in “TermSpaceDF”, assigning high probabilities tcerar
WHERE QTer ms. Term = Ter nSpaceDF. Ter m terms, and low probabilities to frequent terms.

AND Ter nSpaceDF. Term = Ternfreq. Term . . . . . .
GROUP BY Docl d: Finally, retrieval is described as a join of weighted query

terms and the relation “TermFreq”.

8.1.2 TF-IDF Using PSQL SELECT DI STI NCT Docl d
FROM QrTer ns, Ter nSpacel DF, Ternfreq
. L WHERE QTerns. Term = Ter nSpacel DF. Term
Figure 14 shows the probabilistic database schema we use AND Qrerms. Term = Ter nFreq. Ter m
for modelling document retrieval. First, we describe the

probability P(t|d), i.e. the probability that termoccurs in We have modelledf-idf-based retrieval in PSQL. While

document. in traditional SQL aggregation operators were necessary, i

CREATE VI EW Ter nfreq AS PSQL we yvorked on a conceptua_llpr_obabilistic 'Iayer and
SELECT DI SJONT Term Docl d defined evidence keys and probabilistic assumptions. Thus,
FROM Col | it becomes feasible to apply IR concepts to any relational

EVI DENCE KEY (Docld); database.
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Coll TermFreq
- - TermSpaceDF TermSpacelDF
'.?_‘grrr',r?me \-I/Zf)(?har ?grrrl\?me \-I/Zf)(?har Attribute | Type Attribute | Type
Docld varchar Docld varchar Term varchar Term varchar
Fig. 14 PSQL database schema for modelling text retrieval
8.1.3 Comparison of Efficiency and Scalability ation is not as frequent as in transaction-oriented datshas

Therefore, we can store the intermediate outputs to exten-

To evaluate efficiency and scalability, we used two systerﬁ@”al tables, while an alternative is to use materialised

since there no existing system can process both SQL %%WS providing that the database back-end supports them.
PSQL. S a result, the pre-processing time includes the construc-

. . tion time of the intermediate relations (materialised View
The first system, referred to anonymously as A, is a weling corresponding indexes.

known open source multi-thread database and the second . .
one, referred to as B, is our generic DB+IR prototyp igure 15 shows the performance_of pre-processing. The in-
HySpirit ([RLKO1]). On both systems, we implemented §€XINg processes were executed in batch mode, and 10 mil-
tf-idf text retrieval application. In other words, using carlion t0 40 million tuples were loaded.

didate A we implemented the ranking function by mappingigure 15(a) shows the database construction time, where
the IR models onto standard SQL (IR-on-DB), while usinthe processing steps follow the sequence described in sec-
candidate B we implemented the ranking model in PSQlon 8.1.1. First, the source data was loaded to the “Coll”
(DB+IR). The implementation details of both systems wetable, and the B-tree index was built. When the data was
described in sections 8.1.1 and 8.1.2 respectively. loaded, the loading and indexing time for 10 million tuples

It is important to emphasise that the aim of the compariséh 220Ut 4,600 seconds, and for 40 million tuples is about
is to show the flexibility and scalability of the two differen ,800 secqnds.“As soon as the dgta} was Ioaded',’ we computed
approaches (IR-on-DB and DB+IR). We are not comparirji e statistic of “Coll” and stored it in “CollStats”. Becas

the actual systems. Although the experimental environse eri]nd?_( was available, the statirs],ticiwas calculflted:imlstah. h
are not entirely the same, for the purpose of demonstratitiyih€ third step, we generated the “DocSpace” table, whic
the flexibility and scalability this setup is sufficient. contains the document Ids against their document lengths.

) . The curve shows that the time increases in proportion with
The experiments were run on a Linux server (Fedora corefgs number of tuples. Forth, we generated the term frequency
that is equipped with one Intel Pentium4 2.60GHz CPU afg“TermFreq". The curve of processing time seems propor-
2GB memory. The testing data was produced from the entggnal while less than 3 million tuples were loaded, but the
prise track of TREC 2005 data [TRE], and the original t&fme dramatically increased when we loaded 4 million tu-
size is 1.9GB. After transformation there are about 40 Miljes, The last step computed the document frequency that
lion tuples in the table “Coll”, which in system A uses 1.3GEyas in “TermSpace”. The processing time increased sharply
with a 416MB B-tree index. In SyStemB, It uses 1OGB fo&fter 2 million tuples’ this is because to aggregﬂt@eeds

the table and 1.3GB for a Hash-based index. Thus, the '”'tﬂélperform a distinct projection over the entire “Coll” tabl

ter pre-processing, intermediate tables (which can badons._. L
ered as materialised views) and corresponding indexes v\f@%ure 15(b) shows the DB+IR pre-processing time, where
needed to load and index the data and compute the

built. In total, the database size of system A is 3.0GB, aiftf ¢ he other | i lati
system B is 4.4GB. The database sizes are different becalgtl frequency. The other intermediate relations were gen-

they use different storage data structures and differetexin €rated on-the-fly. The curve shows the loading time plus
ing mechanisms. indexing time, where it is about proportional to the data

. , size. Based on the relation “Coll”, term frequency were cal-
For evaluating the pre-processing cost, we measured the Rigated and stored in “TermFreq’, the step includes both
cessing time for 10, 20, 30, and 40 (scaling points 1x, 2¥gmputation and indexing. Because the document frequency
3x and 4x) million tuples. For evaluating the retrieval timg:an be obtained from the probabilistic index (i.e. index on

we measured the performance of various queries, wheggi(Term)”), its computation is saved, and no other pre-
the queries vary with respect to the number of tuples thgycessing is needed.

retrieve (so-called selectivity of the query). A query wit

higher selectivity returns less tuples. We measured psaces'9Ure 16 gives the overall performance. To compare the to-

ing time for 10, 25, ..., and 100 (scaling points 1x, 2.5x, . @ Pre-processing time of the two approaches, we sum up
the times of the pre-processing steps, and the result isrshow
10x) thousand tuples returned. . :

) ) ) ) ) in figure 16(a). We find that the DB+IR needs less pre-
In SeCtIO'n 811, we discussed US”.]g V'|eWS for the |ntermegkocessing time than |R_0n_DB, and DB+IR pre_processing
ate relations. In real-world IR applications, the updaterep js |inear to the data size, whereas IR-on-DB is of polynomial
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Fig. 16 Comparison of IR-on-DB and DB+IR: pre-processing time atdeval time

complexity. Figure 16(b) shows the retrieval time of both Person
systems.The database system outperforms HySpirit, but we Qgrr'nb;te pe 'nnodne;
compare here a mature database product with established al- Nationality | varchar | non-cluster
gebra optimisation and cache usage against our prototypica City varchar | none
implementation of a probabilistic database. Prob float none

To conclude, we emphasise that the IR-on-DB approagly. 17 SQL database schema of “Person” relation
needs a long preparation phase to become ready to perform
large-scale retrieval. For the DB+IR approach, the prepara

tion cost are less than those of IR-on-DB. Therefore, the -
DB+IR approach is more scalable than the IR-on-DB a Ve load millions of tuples to both systems, and then we re-

proach regarding the estimation of probabilities over mi [ievg tuple-based and value-based p.rc'JbabiIities. fen’nhi "
vestigation, we use for SQL the traditional table “Person”.

The schema is shown in figure 17. The schema of the prob-
abilistic table is similar, but without the explicit atttite
“Prob”.

lions of tuples.

8.2 Probability Estimation: SQL vs. PSQL

In this section, we investigate the performance of probabfi-2-1 Probability Estimation based on Tuple Frequency

ity estimations using SQL versus PSQL. The assumption is

that with tailored indexes for probability estimation, wanc For the attribute “Nationality”, there is an index. We want
be faster than traditional SQL in which we use aggregatiém estimate the tuple-based probability of “Nationality”
functions to implement probability estimation. given “City”, i.e. we want to estimate the probability
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Pr person(n|c), Wheren is a value of “Nationality”, and: SELECT count (DISTINCT City) AS NumXXCity
is a value of “City”. FROM Per son;

In SQL, we create a view called “nationalitySpace” foSELECT Nationality,
counting the total number of values in “Nationality” groupe -1 og(count (DI STINCT City)/personStats. NunOf G ty)
by the values in “City”. Then, we obtain the tuple-base@?g;"ozgr SB‘\)(”Naf?rSOI”SE ats
probability by dividing the count of “Nationality” per “Cjt tonatttys
by the number of nationalities (“NumOfNa”) per “City".
In PSQL, the expression is more compact. We definielan

-- SQL based space over “Nationality” by specifying the assunmptio
CREATE VI EW nati onal i t ySpace AS P y"by specifying P

SELECT City, count(Nationality) AS NumCf Na maxidf.
FROM Per son
GROUP BY City; -- PsaL
. . ! SELECT Nationality
SELECT Nationality, Person.Cty, EROM Per son
count (Nationality)/nationalitySpace. NunCf Na ASSUMPTI ON MAX | DF
AS Pnc EVI DENCE KEY ();

FROM nati onal i t ySpace, Person
VWHERE Person.City = nationalitySpace.Cty

GROUP BY Person.Gty, Nationality; Next, we report the performance results for tuple-based and

. . . value-based probability estimations.
In PSQL, we specify the probability aggregation and esti-

mation instead of aggregation and mathematical functions

(log). We create the view “nationalitySpace” by specifying

the evidence key “City”. Then, we aggregate the probabiB-.2.3 Performance of Probability Estimation
ties in a disjoint selection.

. psa For measuring the performance, we generate a relation

CREATE VI EW nati onal i t ySpace AS “Person”. We insert 3 million tuples (628MB) to conduct
SELECT Nationality, Gty the experiment. Both HySpirit and the other database sys-
FROM Per son _ tem built indexes. The index size in HySpirit is 105MB, and
EVI DENCE KEY (Gity); the index size in the database system is 37MB. We use the

SELECT DI SJONT Nationality, Gty same system configuration reported for the previous experi-
FROM nat i onal i t ySpace; ment in section 8.1.3.

Both experiments were also performed in batch mode. We
We have described the SQL-based and the PSQL-basgfimated the probabilities based on the whole data set, and
implementation of a tuple-based probability. Next, we dgve recorded the processing elapse time on the measurement
scribe the implementation of probability estimations lasgoints.

on value frequencies. Figures 18 and 19 show the performance for tuple and

value frequencies, respectively. Both experiments shaiv th
8.2.2 Probability Estimation based on Value Frequency the PSQL processing outperforms the SQL processing. In

particular, when estimating the tuple frequency, the pre-
In this section, we present the implementations of valuBfocessing of the database system did not finish even after

based probability estimations. We use a similar configuri hours, even though proper indexes had been used. When
tracing the reason for this, we found that the selectivity of

tion as for tuple-based probabilities. We calculate thépro; > s C o -

ability of “Nationality” based on the number of values inNationality” is very high, i.e. the number of distinct vals
“City” a nationality is associated with, i.e. we computd? “Nationality”is relatively low. In contrast, the seleeity
the probabilityPy: pe,son|ciy) (), Wheren is a value from of the attribute “City” is very low, i.e. the number of val-
“Nationality”. ’ ues in City” is higher than in “Nationality”. Thgrefore,d&h
traditional approach seemed to struggle grouping by “City”

First, we create a view “personStats” to compute the tgnq then counting the number of values in “Nationality” per
tal number of distinct values in “City”. Then, we group bycity”.

“Nationality”, count for each nationality the number of dis . - . N o
tinct values in “City” the nationality is associated witmc Because in HySpirit, frequencies are maintained in indexes

divide the count by the number of cities. The negative log§l€ Probabilities can be derived directly. The standarexad
rithm yields aridf-value for the values in “Nationality”. The "9 méchanism in the database system does not provide a

corresponding SQL statements are as follows: similar functionality, and the probability estimation otves
expensive aggregations. Therefore, the probability estim

- sQ tions were included in the pre-processing stage in the exper
CREATE VI EW personStats AS iment discussed in section 8.1.
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Fig. 19 Probability estimation based on value frequency: pregssing time and estimation run time

9 Discussion and Outlook What does “probabilities and attribute values are orthogo-
nal” mean? This aspect is excellently covered in [RRO2].

In thi i t di . int d outl kWhen aggregating attribute values in a probabilistic rela-
n his section, we present dISCUSSIon points and OUtlookyR, 1 framework, the aggregation is related to computing

the form of frequently asked questions, which occurred jg, "oy o ctation value. For example, consider a probability
various contexts like talks, reviews, discussions, andrWhaistribution over prices. When we ask for the expected price
applying the technology. then the expected price is definedipricd = > P(price)-

You view the aggregation of probabilities in traditional 5Q price. This illustrates that there is an implicit usage afipr

as physical. What does this meali®ve model probabilis- abilities in a PRA, whereas the “normal” attribute valuess ar
tic tuples in traditional SQL, then probabilities are temht explicitly mentioned in the PSQL query.

efqual' to normal attribute values su_ch as Name, Price, .’\‘I%'ple weights greater than one or less than zero might oc-
tionality, etc. The SQL programmer implements the ranklr}g” when using a disjointness assumption. Is such a rela-

strategy using SQL a_ggregation functions such as sum, M@&nal model probabilistic?The pure algebra has no safety
and arithmetic functions such asg. In PSQL, however, .t oynressions where assumptions are — from a prob-
we view probabilities and attribute values todrthogonal ilistic semantics point of view — wrongly specified (see
I.€. the PSQL programmer has no dlrec_t access to proba S05] for the notion of safe expressions, and [FR97] for
ities. Instead, the algebra operation defines the aggoegat tensional semantics). One topic of future research is to
Therefore, PSQL is a logical layer, whereas traditional SQ}, '3 hrobabilistic model automatically to PSQL/PRA, and,
IS phy'S|caI.|n this sense, since the probability arithmestie vice versa, how to re-engineer the probabilistic model from
described in SQL. a PSQL/PRA script.
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Why is the division not used for modelling probability esiess but not overloading an otherwise tidy paradigm with
timation? The division is equivalent to an algebra exprespecial operators and functions.

sion composed of projection, join, and subtraction (see SeC gqa|apility and optimisationStream-based processing
tion 5.2). (see [PF95] and top-k processing ([FLNO3, TWS04]) are
Is the CONTAINS predicate in SQL not sufficient for IRey to scalable and efficient retrieval in large-scale appli
tasks?Yes and no. Yes, if we are happy with modelling doczations. We covered the DB approaches (known as top-k or
uments as atomic attribute values, which means that th&ankSQL) in the background, but we have said little about
are no or only very restricted means of looking inside theow this applies to PSQL. We are working on soft-sorting
document. No, if we want to apply the expressive powatgebra operators, that would guarantee real-time regpons
of the relational model for representing the knowledge cotimes while risking that the ranking is sub-optimal.

tained in a document. We propose to model the content ©f

d ; lational sch The simol h . Special predicatesThe previous aspect is not to be
documents In a relational schema. The simplest schema dssed with stream-based predicates. Stream-based pred
Coll(Term,Docld)”, but it is the particular strength ofeéh

) X . > icates allow to compare tuple values of subsequent tuples.
relational model to represent any information, e.g. linkg,, example, in the stream of term-document pairs, we

types of links, structure of documents, objects that oceur ., ike to be able to find the documents where the terms
document, and the relationships between objects. sailing and boats appear near to each other. Another fam-
You load large relations to database systems, and thiyof special predicates are the relevance-based prexicat
you complain that there are problems with scalability. Yowe denote a new relevance-based implication predicate as
should use the inverted list\e load document represen-—", borrowing the notation from [vR86] where the con-
tations to database systems, so that we can reason/seaeq of relevance-based implication was proposed. We gen-
across the structured and unstructured data. By represenélised the document-implies-query approach, and the new
ing document content in the structured data model worldlevance-based predicate can be applied to any two at-
we gain a high level of integration. For example, join Petributes in a relational condition.

son.Nationality with a document representation and thus € Interfaces and language$*SQL/PRA might appeal to

trigve docum_ents or document parts that mentiqn th_e naﬁ%’me, but others will prefer interfaces they feel comfort-
ality of a particular group of persons. The opposite di®Tti e with. Whether it is Datalog, description logic diakect

namely to export structured data into the unstructureddvor\ i _hased languages, or SQL dialects for assisting RDF

for doing retrieval is a principle alternative. However, Weayjeva| the likes are many. Our approach is basically to
favour to preserve the semantics and structure of data.

investigate the evaluation of such languages by translat-
What are the next challenge€Qur work programme in- ing them to PSQL/PRA. In a recent study, we mapped
cludes: (1) relevance-based processing of traditional SGBRPARQL queries (JARO06]), in the past we have mapped
(2) design and correctness of probabilistic logical pragga POOL (probabilistic object-oriented logic, [Roe99, LREF02
(3) expressiveness, (4) scalability and optimisations(®- LR04]), where POOL triggered recently POLAR (proba-
cial predicates, and (6) interfaces and languages. bilistic object-oriented logic for annotation-based ietal,
[FFO6]), and POLIS (probabilistic object-oriented logar f

1. Relevance-based processing of SQhe idea is to con- } . A ) .
vert traditional SQL statements automatically into PSQI[“torm‘""t'On summarisation, [FTROG].)’ which are highly ab-
ract and tailored languages to assist the comfortable mod

statements in which a ranking strategy is reflected. Thet), o .

all existing (traditional) SQL queries may yield a relevanc €11ng of specific retrieval tasks.
sorted result. Relevance-based SQL could be viewed as the

external layer in figure 2.

2. Design and correctness of PSQL/PRA prografisr a 10 Summary and Conclusions
PSQL/PRA program, we encountered in many contexts the

need to derive the probabilistic semantics, so that the knowps naper presented a probabilistic variant of SQL in which
edge engineer (the person who works in PSQL/PRA) C@, jescribe probabilitaggregation(section 5) andstima-
verify his/her scripting. For this, we have developed a progo (section 6). It is one of the main contributions to de-
methodology which has been part of an earlier version gfine hoth, aggregatiand estimation, within the coherent
this paper, but will be reported separately. framework of a probabilistic relational algebra. Sincetinei

3. Expressivenes3he expressiveness of PSQL/PRA allowthe standard five basic operators, nor division, nor atigibu
for the modelling of not only retrieval models, but also evalalue aggregation are suitable for probability estimatios
uation measures such as precision/recall. Next stepsdacluequired and developed a new probabilistic operator: The re
to incorporate average precision, precision@10, recgrotational Bayes.

rank, etc. In general, this is the field of increasing the €8pr 1g gther main contribution of this paper is the probabilis-

siveness where we take, like for the relqtional Bayes, & Caffe relational modelling, i.e. a relatively abstract mdihgj,
ful and conceptual approach, trying to improve expressivgs retrieval models (section 7). We have demonstrated the

modelling of differenttf-idf variants, and the modelling of
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the two main probabilistic retrieval models, binary indeseed fund) and the technology transfer department of Queen
pendent retrieval model and language modelling. Also, viary University of London.
modelled precision/recall. This allows for describingktas
specific measures, as required for example, for structured
document retrieval.
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